• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.036 seconds

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors (비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Through artificial neural network education using spreadsheets, non-major undergraduate students can understand the operation principle of artificial neural networks and develop their own artificial neural network software. Here, training of the operation principle of artificial neural networks starts with the generation of training data and the assignment of correct answer labels. Then, the output value calculated from the firing and activation function of the artificial neuron, the parameters of the input layer, hidden layer, and output layer is learned. Finally, learning the process of calculating the error between the correct label of each initially defined training data and the output value calculated by the artificial neural network, and learning the process of calculating the parameters of the input layer, hidden layer, and output layer that minimize the total sum of squared errors. Training on the operation principles of artificial neural networks using a spreadsheet was conducted for undergraduate non-major students. And image training data and basic artificial neural network development results were collected. In this paper, we analyzed the results of collecting two types of training data and the corresponding artificial neural network SW with small 12-pixel images, and presented methods and execution results of using the collected training data for Orange machine learning model learning and analysis tools.

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

Forecasting Water Levels Of Bocheong River Using Neural Network Model

  • Kim, Ji-tae;Koh, Won-joon;Cho, Won-cheol
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.129-136
    • /
    • 2000
  • Predicting water levels is a difficult task because a lot of uncertainties are included. Therefore the neural network which is appropriate to such a problem, is introduced. One day ahead forecasting of river stage in the Bocheong River is carried out by using the neural network model. Historical water levels at Snagye gauging point which is located at the downstream of the Bocheong River and average rainfall of the Bocheong River basin are selected as training data sets. With these data sets, the training process has been done by using back propagation algorithm. Then waters levels in 1997 and 1998 are predicted with the trained algorithm. To improve the accuracy, a filtering method is introduced as predicting scheme. It is shown that predicted results are in a good agreement with observed water levels and that a filtering method can overcome the lack of training patterns.

  • PDF

Implementation of Daily Water Supply Prediction System by Artificial Intelligence Models (일급수량 예측을 위한 인공지능모형 구축)

  • Yeon, In-sung;Jun, Kye-won;Yun, Seok-whan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.395-403
    • /
    • 2005
  • It is very important to forecast water supply for reasonal operation and management of water utilities. In this paper, water supply forecasting models using artificial intelligence are developed. Artificial intelligence models shows better results by using Temperature(t), water supply discharge (t-1) and water supply discharge (t-2), which are expressed by neural network(LMNNWS; Levenberg-Marquardt Neural Network for Water Supply, MDNNWS; MoDular Neural Network for Water Supply) and neuro fuzzy(ANASWS; Adaptive Neuro-Fuzzy Inference Systems for Water Supply). ANFISWS model which is applied for water supply forecasting shows stable application to the variable water supply data. As results, MDNNWS model shows the highest overall accuracy among proposed water supply forecasting models and the lowest estimation error with the order of ANFISWS, LMNNWS model.

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Power Disturbance Classifier Using Wavelet-Based Neural Network

  • Choi Jae-Ho;Kim Hong-Kyun;Lee Jin-Mok;Chung Gyo-Bum
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.

Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 굴착에 따른 지표침하평가)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Partial Discharge Pattern Recognition using Neural Network (뉴우럴 네트워크에 의한 부분방전 패턴 인식)

  • Lee, June-Ho;Hozumi, Naohiro;Okamoto, Tatsuki
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1304-1306
    • /
    • 1995
  • In this study, a neural network algorithm through a data standardization method was developed to discriminate the phase-shifted partial discharge(PD) patterns such as a $\phi$-q-n pattern. Considering the PD measurement in the field, it is not so easy to acquire absolute phase angles of PD pulses. As a consequence, one of the significant problems to be solved in applying the neural network algorithm to practical systems is to develop a method that can discriminate phase-shifted $\phi$-q-n patterns. Therefore, authors established a new method which could convert phase-shifted $\phi$-q-n patterns to a standardized $\phi$-q-n pattern which was not influenced by phase shifting. This new standardization method improved the recognition performance of a neural network for the phase-shifted $\phi$-q-n patterns considerably.

  • PDF