• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.036 seconds

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

THREE-STAGED RISK EVALUATION MODEL FOR BIDDING ON INTERNATIONAL CONSTRUCTION PROJECTS

  • Wooyong Jung;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.534-541
    • /
    • 2011
  • Risk evaluation approaches for bidding on international construction projects are typically partitioned into three stages: country selection, project classification, and bid-cost evaluation. However, previous studies are frequently under attack in that they have several crucial limitations: 1) a dearth of studies about country selection risk tailored for the overseas construction market at a corporate level; 2) no consideration of uncertainties for input variable per se; 3) less probabilistic approaches in estimating a range of cost variance; and 4) less inclusion of covariance impacts. This study thus suggests a three-staged risk evaluation model to resolve these inherent problems. In the first stage, a country portfolio model that maximizes the expected construction market growth rate and profit rate while decreasing market uncertainty is formulated using multi-objective genetic analysis. Following this, probabilistic approaches for screening bad projects are suggested through applying various data mining methods such as discriminant logistic regression, neural network, C5.0, and support vector machine. For the last stage, the cost overrun prediction model is simulated for determining a reasonable bid cost, while considering non-parametric distribution, effects of systematic risks, and the firm's specific capability accrued in a given country. Through the three consecutive models, this study verifies that international construction risk can be allocated, reduced, and projected to some degree, thereby contributing to sustaining stable profits and revenues in both the short-term and the long-term perspective.

  • PDF

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Word-Level Embedding to Improve Performance of Representative Spatio-temporal Document Classification

  • Byoungwook Kim;Hong-Jun Jang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.830-841
    • /
    • 2023
  • Tokenization is the process of segmenting the input text into smaller units of text, and it is a preprocessing task that is mainly performed to improve the efficiency of the machine learning process. Various tokenization methods have been proposed for application in the field of natural language processing, but studies have primarily focused on efficiently segmenting text. Few studies have been conducted on the Korean language to explore what tokenization methods are suitable for document classification task. In this paper, an exploratory study was performed to find the most suitable tokenization method to improve the performance of a representative spatio-temporal document classifier in Korean. For the experiment, a convolutional neural network model was used, and for the final performance comparison, tasks were selected for document classification where performance largely depends on the tokenization method. As a tokenization method for comparative experiments, commonly used Jamo, Character, and Word units were adopted. As a result of the experiment, it was confirmed that the tokenization of word units showed excellent performance in the case of representative spatio-temporal document classification task where the semantic embedding ability of the token itself is important.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

Human hand gesture identification framework using SIFT and knowledge-level technique

  • Muhammad Haroon;Saud Altaf;Zia-ur- Rehman;Muhammad Waseem Soomro;Sofia Iqbal
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1022-1034
    • /
    • 2023
  • In this study, the impact of varying lighting conditions on recognition and decision-making was considered. The luminosity approach was presented to increase gesture recognition performance under varied lighting. An efficient framework was proposed for sensor-based sign language gesture identification, including picture acquisition, preparing data, obtaining features, and recognition. The depth images were collected using multiple Microsoft Kinect devices, and data were acquired by varying resolutions to demonstrate the idea. A case study was designed to attain acceptable accuracy in gesture recognition under variant lighting. Using American Sign Language (ASL), the dataset was created and analyzed under various lighting conditions. In ASL-based images, significant feature points were selected using the scale-invariant feature transformation (SIFT). Finally, an artificial neural network (ANN) classified hand gestures using specified characteristics for validation. The suggested method was successful across a variety of illumination conditions and different image sizes. The total effectiveness of NN architecture was shown by the 97.6% recognition accuracy rate of 26 alphabets dataset with just a 2.4% error rate.

Activity recognition of stroke-affected people using wearable sensor

  • Anusha David;Rajavel Ramadoss;Amutha Ramachandran;Shoba Sivapatham
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1079-1089
    • /
    • 2023
  • Stroke is one of the leading causes of long-term disability worldwide, placing huge burdens on individuals and society. Further, automatic human activity recognition is a challenging task that is vital to the future of healthcare and physical therapy. Using a baseline long short-term memory recurrent neural network, this study provides a novel dataset of stretching, upward stretching, flinging motions, hand-to-mouth movements, swiping gestures, and pouring motions for improved model training and testing of stroke-affected patients. A MATLAB application is used to output textual and audible prediction results. A wearable sensor with a triaxial accelerometer is used to collect preprocessed real-time data. The model is trained with features extracted from the actual patient to recognize new actions, and the recognition accuracy provided by multiple datasets is compared based on the same baseline model. When training and testing using the new dataset, the baseline model shows recognition accuracy that is 11% higher than the Activity Daily Living dataset, 22% higher than the Activity Recognition Single Chest-Mounted Accelerometer dataset, and 10% higher than another real-world dataset.

Navigating the Transformative Landscape of Virtual Education Trends across India

  • Asha SHARMA;Aditya MISHRA
    • Fourth Industrial Review
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Purpose: Education is the part of a fundamental human right across the world. In recent years, the trend of virtual education has increased tremendously. The paper aims to find the impact of adoption, accessibility, interactions, knowledge, and satisfaction on the success of transformation towards virtual education. Research design, data and methodology: Primary data has been gathered through the use of responses from students taking admission in virtual higher education to standardized questionnaires. Of the 250, only 122 were considered complete and have been used in further studies. Convinced random sampling method has been used. The results were evaluated using the Likert Five-Point Scale. For applying these statistical tools software SmartPLS and SPSS 19 have been used. The fitness of the model has been re-checked through an Artificial Neural Network (ANN). Result: Results derived that adoption, accessibility, and interactions have a significant impact on knowledge, knowledge influences satisfaction level and satisfaction have a meaningful impact on the success of transformation towards virtual education. Conclusion: It can be concluded that virtual education has the potential to change the future of the education system and its potential in India. The highest importance is due to satisfaction (100%), adoption (98.7%), knowledge (91.4%), accessibility (62%), and interaction (29.2%).

Dialog-based multi-item recommendation using automatic evaluation

  • Euisok Chung;Hyun Woo Kim;Byunghyun Yoo;Ran Han;Jeongmin Yang;Hwa Jeon Song
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.277-289
    • /
    • 2024
  • In this paper, we describe a neural network-based application that recommends multiple items using dialog context input and simultaneously outputs a response sentence. Further, we describe a multi-item recommendation by specifying it as a set of clothing recommendations. For this, a multimodal fusion approach that can process both cloth-related text and images is required. We also examine achieving the requirements of downstream models using a pretrained language model. Moreover, we propose a gate-based multimodal fusion and multiprompt learning based on a pretrained language model. Specifically, we propose an automatic evaluation technique to solve the one-to-many mapping problem of multi-item recommendations. A fashion-domain multimodal dataset based on Koreans is constructed and tested. Various experimental environment settings are verified using an automatic evaluation method. The results show that our proposed method can be used to obtain confidence scores for multi-item recommendation results, which is different from traditional accuracy evaluation.