• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Explainable Prediction Model of Exchange Rates via Spatiotemporal Network Topology and Graph Neural Networks (시공간 의존성 네트워크 위상 및 그래프 신경망을 활용한 설명 가능한 환율 변화 예측 모형 개발)

  • Insu Choi;Woosung Koh;Gimin Kang;Yuntae Jang;Yu Jin Roh;Ji Yun Lee;Woo Chang Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.374-376
    • /
    • 2023
  • 최근 환율 예측에 관한 다양한 연구가 진행되어 왔다. 이러한 추세에 대응하여 본 연구에서는 Pearson 상관 계수 및 상호 정보를 사용하여 외환 시장의 환율 변동을 분석하는 다중 연결 네트워크를 구축하였다. 본 연구에서는 이러한 구성된 환율 변화에 대한 시공간 의존성 네트워크를 만들고 그래프 기계 학습의 잠재력을 조사하여 예측 정확도를 향상시키려고 노력하였다. 본 연구 결과는 선형 및 비선형 종속 네트워크 모두에 대해 그래프 신경망을 활용한 임베딩을 활용하여 기존의 기계 학습 알고리즘과 결합시킬 경우 환율 변화의 예측력이 향상될 수 있음을 경험적으로 확인하였다. 특히, 이러한 결과는 통화 간 상호 의존성에만 의존하여 추가 데이터 없이 달성되었다. 이 접근 방식은 데이터 효율성을 강화하고 그래프 시각화를 통해 설명력 있는 통찰력을 제공하며 주어진 데이터 세트 내에서 효과적인 데이터를 생성하여 예측력을 높이는 결과로 해석할 수 있다.

Optimized patch feature extraction using CNN for emotion recognition (감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출)

  • Irfan Haider;Aera kim;Guee-Sang Lee;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

The faintest quasar luminosity function at z ~ 5 from Deep Learning and Bayesian Inference

  • Shin, Suhyun;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.31.2-31.2
    • /
    • 2021
  • To estimate the contribution of quasars on keeping the IGM ionized, building a quasar luminosity function (LF) is necessary. Quasar LFs derived from multiple quasar surveys, however, are incompatible, especially for the faint regime, emphasizing the need for deep images. In this study, we construct quasar LF reaching M1450~-21.5 AB magnitude at z ~ 5, which is 1.5 mag deeper than previously reported LFs, using deep images from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We trained an artificial neural network (ANN) by inserting the colors as inputs to classify the quasars at z ~ 5 from the late-type stars and low-redshift galaxies. The accuracy of ANN is > 99 %. We also adopted the Bayesian information criterion to elaborate on the quasar-like objects. As a result, we recovered 5/5 confirmed quasars and remarkably minimized the contamination rate of high-redshift galaxies by up to six times compared to the selection using color selection alone. The constructed quasar parametric LF shows a flatter faint-end slope α=-127+0.16-0.15 similar to the recent LFs. The number of faint quasars (M1450 < -23.5) is too few to be the main contributor to IGM ionizing photons.

  • PDF

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

Combined nano-particle drug delivery and physiotherapy in treatment of common injuries in dance-sport

  • Weixin Dong;Gang Lu;Yangling Jiang;Fan Zhou;Xia Liu;Chunxia Lu
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.225-237
    • /
    • 2023
  • Combination of novel technologies with traditional physiotherapy in rehabilitation in injured athletes have shown to provide improved time of recovery. In specific, nanodrugs delivery systems are widely utilized as a counterpart to the physiotherapy in injuries in sports. In the present study, we focus on the common injuries in dance-sports, their recovery and the effect combination of nano-particle drug delivery with the physiotherapy practices. In this regard, a comprehensive review on the common injuries in dance sport is provided. Moreover, the researches on the effectiveness of the nano-particle drug delivery in therapy of such injuries and in similar cases are provided. The possibility of using combination of nano-particle drug delivery and physiotherapy is discussed in detail. Finally, using artificial intelligence methods, predictions on the recovery time and after-treatment side-effects is investigated. Artificial Neural Network (ANN) predictions suggested that using nano-particle drug delivery systems along with physiotherapy practices could provide shortened treatment time to recovery in comparison to conventional drugs. Moreover, the post-recover effects are less than the conventional methods.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

Prediction on Busan's Gross Product and Employment of Major Industry with Logistic Regression and Machine Learning Model (로지스틱 회귀모형과 머신러닝 모형을 활용한 주요산업의 부산 지역총생산 및 고용 효과 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.47 no.2
    • /
    • pp.69-88
    • /
    • 2022
  • This paper aims to predict Busan's regional product and employment using the logistic regression models and machine learning models. The following are the main findings of the empirical analysis. First, the OLS regression model shows that the main industries such as electricity and electronics, machine and transport, and finance and insurance affect the Busan's income positively. Second, the binomial logistic regression models show that the Busan's strategic industries such as the future transport machinery, life-care, and smart marine industries contribute on the Busan's income in large order. Third, the multinomial logistic regression models show that the Korea's main industries such as the precise machinery, transport equipment, and machinery influence the Busan's economy positively. And Korea's exports and the depreciation can affect Busan's economy more positively at the higher employment level. Fourth, the voting ensemble model show the higher predictive power than artificial neural network model and support vector machine models. Furthermore, the gradient boosting model and the random forest show the higher predictive power than the voting model in large order.

Automated classification of clay suspension using ultrasonic backscattered signal with convolution neural network (초음파 후방산란 신호와 합성곱 신경망을 이용한 점토 현탁액 자동 분류 시스템)

  • Yeongho Sung;Incheol Joo;Jang Keon Kim;Jongmuk Won;Hae Gyun Lim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.665-666
    • /
    • 2023
  • 미세 물질을 포함하고 있는 광산 폐기물의 디워터링 과정(dewatering process)은 작은 입자들의 침전속도가 낮기 때문에 시간이 오래 걸리고 어려운 과정이다. 따라서 광산 폐기물이 안정적으로 침전되었는지 확인하기 위해서 디워터링 과정을 연속적으로 모니터링하는 기술이 필요하다. 이 연구에서는 kaolinite, illite, bentonite 3 종류의 점토를 3 가지 농도(0.1g/L, 1g/L, 5g/L)로 나눠서 초음파 음향 감지를 이용해 후방산란 신호를 측정했다. 그리고 측정된 신호를 활용하여 합성곱 신경망(CNN) 모델을 개발하여 점토의 분류 모델을 만드는 연구를 수행했다. 본 연구에서 보여준 CNN 의 높은 정확도는 광산 폐기물의 디워터링 과정에서 미세 광물과 미세 농도 분류 모니터링에 적합한 저렴하고 측정하기 쉬운 음향 감지의 사용 가능성을 입증했다.

A Deep Neural Network Technique for Automatic Measurement of Tibial Plateau Angle from Animal X-ray Images (동물 X-ray 영상에서 경골고원각도 자동 검출을 위한 심층신경망 기법 )

  • Jimin Kim;Hyungkyu Kim;Jeonghyeon Ryu;Sunju Lee;Hojoon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.579-580
    • /
    • 2023
  • 본 논문에서는 동물의 십자인대 질환의 진단지표인 경골고원각도(TPA)를 자동으로 측정하는 딥러닝 소프트웨어 기법을 제안한다. 동물 X-ray 영상에서 나타나는 피사체의 위치와 형태에 대한 다양한 변이는 TPA(Tibial Plateau Angle) 지표 산출에 필요한 특징점 검출과정에서 학습 효율을 현저하게 저하시킨다. 이에 본 연구에서는 YOLO(You Only Look Once) 기반 모델을 사용하여 일차적으로 경골영역의 분할 단계를 수행하고, 이어서 경골 상단부의 과간융기와 복사뼈의 중심점을 찾는 과정을 Resnet 기반의 특징점 추출 모듈로서 구현함으로써 학습의 효율과 지표 검출의 정확도를 향상시켰다. 총 201 개의 실제 X-ray 영상을 사용하여 학습 속도와 영역 분할 및 특징점 추출의 정확도 측면을 고려함으로 제안된 이론의 타당성을 실험적으로 평가하였다.