수박의 이미지와 수박의 무게 데이터를 활용해 수박의 당도를 예측하고 모델의 정확도를 측정한다. 과피가 얇고, 부피가 작은 과일의 경우 휴대용 비파괴 당도 측정기를 통해 비교적 간편하게 당도 측정이 가능하다. 하지만 수박은 과피도 두껍고, 부피도 크기 때문에 넓은 장소와 비용을 부담해야 하는 선별장에만 당도를 측정할 수 있는 실정이다. 본 논문에서는 줄무늬가 끊어지지 않고, 원형이 아닌 타원형이 맛있는 수박이라는 속설에 부합하는 수박이 실제로 맛있는 수박인지를 확인하고자 수박 이미지를 수집하여 당도에 따라 이미지를 분류한 다음, CNN 을 적용하여 수박 당도 예측을 실시하였다. 실험 결과 타원형 수박은 당도가 높은 것으로 나타났으나 줄무늬가 끊어진 수박과 끊어지지 않은 수박 간의 당도 차이는 없는 것으로 나타났다. 향후 수박의 당도에 영향을 미칠 수 있는 다양한 변수를 활용하여 정확도를 높인다면 현재 사용되고 있는 비파괴 당도 측정기를 보완할 수 있을 것으로 기대된다.
Lee, Ha Neul;Kim, Jong Sung;Seo, Jae Seung;Kim, Sam Eun;Kim, Soojun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.194-194
/
2021
최근 지구온난화 및 이상기후 현상으로 인하여 집중호우의 빈도와 강도가 급증하고 있다. 그리고 급격한 도시화로 불투수 면적이 증가하여 도시지역에 침수피해가 빈번하게 발생하고 있는 실정이다. 이러한 침수피해를 방지하기 위하여 침수위험지구, 재해위험지구를 선정하여 집중호우에 대하여 집중관리를 하고 있지만 위험지구이외의 곳에서 침수가 발생할 경우 신속하게 대처하지 못하는 문제가 발생하고 있다. 또한, 하천이 범람하여 발생하는 외수침수의 경우 수위를 실시간으로 확인할 수 있어 미리 대응이 가능하지만, 내수침수의 경우 지하에 매설되어 있는 관로의 상태를 확인할 수 없기 때문에 순간적으로 발생하는 침수에 대하여 신속하게 대처를 해야 한다. 현재 침수 피해를 신속하게 대처하기 위하여 CCTV를 활용해 침수의 발생여부를 모니터링 하고 있지만 CCTV설치 지역에 비하여 적은 인력으로 모든 CCTV를 확인하지 못하여 침수피해를 신속하게 대처하지 못하고 있는 실정이다. 본 연구에서는 침수사진 자료를 CNN(Convolutional Neural Network)기법을 이용하여 학습시켜 침수의 발생여부를 판단하는 모델을 제안하였다. 딥러닝 기법의 CNN은 이미지의 특징을 추출하여 학습하는 과정을 가지게 되는데 학습이 완료된 모델은 침수사진의 특징을 파악하여 침수가 발생하였는지에 대한 여부를 자동적으로 판단하게 된다. 본 연구결과를 CCTV관재센터 혹은 지자체와의 연계를 통하여 침수의 발생여부를 자동적으로 판단해주는 시스템이 개발된다면 신속한 침수피해 대처가 이루어 질 수 있을 것이라 판단된다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.348-350
/
2021
When predicting the concentration of fine dust using deep learning, there is a problem that the characteristics of a high concentration of 81㎍/m3 or more are not well reflected in the prediction model. In this paper, a comparison through predictive performance was conducted to confirm the results of reflecting the characteristics of fine dust in the high concentration area according to the deep learning algorithm. As a result of performance evaluation, overall, similar levels of results were shown, but the RNN model showed higher accuracy than other models at concentrations of "very bad" based on AQI. This confirmed that the RNN algorithm reflected the characteristics of the high concentration better than the DNN and LSTM algorithms.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.521-523
/
2021
Data augmentation are techniques used to increase the amount of data by using small amount of existing data. With the spread of the Internet, we can easily obtain data. However, there are still certain industries, like medicine, where it is difficult to obtain data. The same is true for image data in which a black screen is displayed on video wall controller. Because it is rare that a black screen is displayed during operation, it is not easy to obtain an image with a black screen. We propose a DCGAN based architecture that generate dataset using a small amount of black screen image.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.524-526
/
2021
As the video wall controller market is growing rapidly, issues that have not been addressed so far are raised. One of them is a phenomenon in which a black screen is displayed on a multi-screen. Black screen is displayed due to an error in the video being displayed in the video wall controller. Human intervention is inevitable to recognize and solve the black screen. However, it is impossible for the operator to monitor the multi-screen 24 hours a day. In this paper, we propose a model that detects the black screen being displayed on the video wall controller. We propose a CNN based architecture to detect a black screen.
Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
Smart Structures and Systems
/
v.32
no.1
/
pp.61-81
/
2023
This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.
Objectives: Considering the importance of social determinants of health (SDHs) in promoting the health of residents of informal settlements and their diversity, abundance, and breadth, this study aimed to identify, measure, and rank SDHs for health promotion interventions targeting informal settlement residents in a metropolitan area in Iran. Methods: Using a hybrid method, this study was conducted in 3 phases from 2019 to 2020. SDHs were identified by reviewing studies and using the Delphi method. To examine the SDHs among informal settlement residents, a cross-sectional analysis was conducted using researcher-made questionnaires. Multilayer perceptron analysis using an artificial neural network was used to rank the SDHs by priority. Results: Of the 96 determinants identified in the first phase of the study, 43 were examined, and 15 were identified as high-priority SDHs for use in health-promotion interventions for informal settlement residents in the study area. They included individual health literacy, nutrition, occupational factors, housing-related factors, and access to public resources. Conclusions: Since identifying and addressing SDHs could improve health justice and mitigate the poor health status of settlement residents, ranking these determinants by priority using artificial intelligence will enable policymakers to improve the health of settlement residents through interventions targeting the most important SDHs.
Thanh-Vu Dang;Gwang-hyun Yu;Ji-yong Kim;Young-hwan Park;Chil-woo Lee;Jin-Young Kim
Smart Media Journal
/
v.12
no.1
/
pp.32-46
/
2023
Natural Language Processing (NLP) has grown tremendously in recent years. Typically, bilingual, and multilingual translation models have been deployed widely in machine translation and gained vast attention from the research community. On the contrary, few studies have focused on translating between spoken and sign languages, especially non-English languages. Prior works on Sign Language Translation (SLT) have shown that a mid-level sign gloss representation enhances translation performance. Therefore, this study presents a new large-scale Korean sign language dataset, the Museum-Commentary Korean Sign Gloss (MCKSG) dataset, including 3828 pairs of Korean sentences and their corresponding sign glosses used in Museum-Commentary contexts. In addition, we propose a translation framework based on self-supervised learning, where the pretext task is a text-to-text from a Korean sentence to its back-translation versions, then the pre-trained network will be fine-tuned on the MCKSG dataset. Using self-supervised learning help to overcome the drawback of a shortage of sign language data. Through experimental results, our proposed model outperforms a baseline BERT model by 6.22%.
Chunping Wang;Keming Chen;Abbas Yaseen Naser;H. Elhosiny Ali
Earthquakes and Structures
/
v.24
no.2
/
pp.127-140
/
2023
The vibration of microtubule in human cells is the source of electrical field around it and inside cell structure. The induction of electrical field is a direct result of the existence of dipoles on the surface of the microtubules. Measuring the electrical fields could be performed using nano-scale sensors and the data could be transformed to other computers using internet of things (IoT) technology. Processing these data is feasible by artificial intelligence-based methods. However, the first step in analyzing the vibrational behavior is to study the mechanics of microtubules. In this regard, the vibrational behavior of the microtubules is investigated in the present study. A shell model is utilized to represent the microtubules' structure. The displacement field is assumed to obey first order shear deformation theory and classical theory of elasticity for anisotropic homogenous materials is utilized. The governing equations obtained by Hamilton's principle are further solved using analytical method engaging Navier's solution procedure. The results of the analytical solution are used to train, validate and test of the deep neural network. The results of the present study are validated by comparing to other results in the literature. The results indicate that several geometrical and material factors affect the vibrational behavior of microtubules.
A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.