• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.049 seconds

MU-MIMO Scheduling using DNN-based Precoder with Limited Feedback (심층신경망 기반의 프리코딩 시스템을 활용한 다중사용자 스케줄링 기법에 관한 연구)

  • Kyeongbo Kong;Moonsik Min
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.141-144
    • /
    • 2023
  • Recently, a joint channel estimation, channel quantization, feedback, and precoding system based on deep-neural network (DNN) was proposed. The corresponding system achieved a joint optimization based on deep learning such that it achieved a higher sum rate than the existing codebook-based precoding systems. However, this DNN-based procoding system is not directly applicable for the environments with many users such that a specific user selection can potentially increase the sum rate of the system. Thus, in this letter, we study an appropriate user selection method suitable for DNN-based precoding.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

Automatic assessment of post-earthquake buildings based on multi-task deep learning with auxiliary tasks

  • Zhihang Li;Huamei Zhu;Mengqi Huang;Pengxuan Ji;Hongyu Huang;Qianbing Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • Post-earthquake building condition assessment is crucial for subsequent rescue and remediation and can be automated by emerging computer vision and deep learning technologies. This study is based on an endeavour for the 2nd International Competition of Structural Health Monitoring (IC-SHM 2021). The task package includes five image segmentation objectives - defects (crack/spall/rebar exposure), structural component, and damage state. The structural component and damage state tasks are identified as the priority that can form actionable decisions. A multi-task Convolutional Neural Network (CNN) is proposed to conduct the two major tasks simultaneously. The rest 3 sub-tasks (spall/crack/rebar exposure) were incorporated as auxiliary tasks. By synchronously learning defect information (spall/crack/rebar exposure), the multi-task CNN model outperforms the counterpart single-task models in recognizing structural components and estimating damage states. Particularly, the pixel-level damage state estimation witnesses a mIoU (mean intersection over union) improvement from 0.5855 to 0.6374. For the defect detection tasks, rebar exposure is omitted due to the extremely biased sample distribution. The segmentations of crack and spall are automated by single-task U-Net but with extra efforts to resample the provided data. The segmentation of small objects (spall and crack) benefits from the resampling method, with a substantial IoU increment of nearly 10%.

A Comparative Study on Feature Selection and Classification Methods Using Closed Frequent Patterns Mining (닫힌 빈발 패턴을 기반으로 한 특징 선택과 분류방법 비교)

  • Zhang, Lei;Jin, Cheng Hao;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.148-151
    • /
    • 2010
  • 분류 기법은 데이터 마이닝 기술 중 가장 잘 알려진 방법으로서, Decision tree, SVM(Support Vector Machine), ANN(Artificial Neural Network) 등 기법을 포함한다. 분류 기법은 이미 알려진 상호 배반적인 몇 개 그룹에 속하는 다변량 관측치로부터 각각의 그룹이 어떤 특징을 가지고 있는지 분류 모델을 만들고, 소속 그룹이 알려지지 않은 새로운 관측치가 어떤 그룹에 분류될 것인가를 결정하는 분석 방법이다. 분류기법을 수행할 때에 기본적으로 특징 공간이 잘 표현되어 있다고 가정한다. 그러나 실제 응용에서는 단일 특징으로 구성된 특징공간이 분명하지 않기 때문에 분류를 잘 수행하지 못하는 문제점이 있다. 본 논문에서는 이 문제에 대한 해결방안으로써 많은 정보를 포함하면서 빈발패턴에 대한 정보의 순실이 없는 닫힌 빈발패턴 기반 분류에 대한 연구를 진행하였다. 본 실험에서는 ${\chi}^2$(Chi-square)과 정보이득(Information Gain) 속성 선택 척도를 사용하여 의미있는 특징 선택을 수행하였다. 그 결과, 이 연구에서 제시한 척도를 사용하여 특징 선택을 수행한 경우, C4.5, SVM 과 같은 분류기법보다 더 향상된 분류 성능을 보였다.

Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility (하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템)

  • Seung-Jae Ham;Min-Su Kang;Seong-Woo Jeong;Joonhyuk Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

Prediction of maximum tsunami heights using neural network (인공신경망기반의 최대 지진해일고 예측)

  • Min-Jong Song;Yong-Sik Cho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.484-484
    • /
    • 2023
  • 지진해일은 해저지진, 화산활동, 해저 산사태 등에 의해 발생되는 장주기 파랑이다. 지진해일은 발생빈도가 낮지만, 한번 발생하면 많은 에너지가 연안으로 유입되어 인명 및 재산피해를 야기 시킬 수 있다. 따라서, 과거 수십년동안 지진해일에 대한 연구는 지진해일의 역학관계를 이해하고, 이를 바탕으로 한 수치모델 개발에 초점을 두어 연구가 진행되어 왔다. 더욱이, 지진해일 실험적 연구는 많은 경제적 비용을 지불해야 하기에 수치모델개발 연구가 더욱 중점적으로 수행되어 왔다. 지리학적으로 우리나라는 지진해일에 안전하지 못하다. 하나의 예로, 1983년 5월 26일, 일본 서해안에서 발생한 지진해일은 동해로 전파되어 동해안 지역에 커다란 피해를 야기시켰다. 이 당시, 강원도삼척시 원덕읍에 위치한 임원항에서는 2명의 사상자와 2명의 부상자가 발생하였고, 당시 금액으로 약3억원의 재산피해가 발생하였다. 이 연구는 인공지능 기법 중 하나인 인공신경망을 이용하여 인명과 재산피해가 발생한 임원항에서 최대지진해일고를 예측하고자 하였다. 지진해일 수치모델은 뛰어난 정확도를 나타내는 반면, 결과를 산출하는데 상당한 시간을 필요로 한다. 이에 반해, 인공신경망은 수치모델과 유사한 정확도 및 결과를 신속하게 제공할 수 있다는 장점을 가지고 있다. 지진해일 인공신경망 모델 개발은 지진의 단층파라미터를 바탕으로 작성된 지진해일의 시나리오를 토대로 연구가 진행되었고, 우리나라 동해에 위치한 외해 관측 지점의 지진해일고 자료를 통해, 임원항에서의 최대 지진해일고가 예측되도록 개발되었다. 이를 위하여, 인공신경망의 학습 및 검증 과정을 수행하였고, 향후 발생 가능한 다양한 지진해일에 대해 평가함으로써, 인공신경망 모델의 예측성능을 확인하였다.

  • PDF

Effectiveness of satellite-based vegetation index on distributed regional rainfall-runoff LSTM model (분포형 지역화 강우-유출 LSTM 모형에서의 위성기반 식생지수의 유효성)

  • Jeonghun Lee;Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.230-230
    • /
    • 2023
  • 딥러닝 알고리즘 중 과거의 정보를 저장하는 문제(장기종속성 문제)가 있는 단순 RNN(Simple Recurrent Neural Network)의 단점을 해결한 LSTM(Long short-term memory)이 등장하면서 특정한 유역의 강우-유출 모형을 구축하는 연구가 증가하고 있다. 그러나 하나의 모형으로 모든 유역에 대한 유출을 예측하는 지역화 강우-유출 모형은 서로 다른 유역의 식생, 지형 등의 차이에서 발생하는 수문학적 행동의 차이를 학습해야 하므로 모형 구축에 어려움이 있다. 따라서, 본 연구에서는 국내 12개의 유역에 대하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축한 이후 강우 이외의 보조 자료에 따른 정확도를 살펴보았다. 국내 12개 유역의 7년 (2012.01.01-2018.12.31) 동안의 49개 격자(4km2)에 대한 10분 간격 레이더 강우, MODIS 위성 이미지 영상을 활용한 식생지수 (Normalized Difference Vegetation Index), 10분 간격 기온, 유역 평균 경사, 단순 하천 경사를 입력자료로 활용하였으며 10분 간격 유량 자료를 출력 자료로 사용하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축하였다. 이후 구축된 모형의 성능을 검증하기 위해 학습에 사용되지 않은 3개의 유역에 대한 자료를 활용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)를 확인하였다. 식생지수를 보조 자료를 활용하였을 경우 제안한 모형은 3개의 검증 유역에 대하여 하천 흐름을 높은 정확도로 예측하였으며 딥러닝 모형이 위성 자료를 통하여 식생에 의한 차단 및 토양 침투와 같은 동적 요소의 학습이 가능함을 나타낸다.

  • PDF

Flood Predicion of Dorimcheon Stream basin using LSTM (LSTM 기법을 이용한 도림천 유역의 침수 예측)

  • Se Dong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.513-513
    • /
    • 2023
  • 최근 이상기후의 영향으로 국지성 및 집중호우로 인한 침수 피해가 증가하고 있다. 도시유역의 홍수는 사회적·경제적으로 큰 손실을 야기할 수 있어 실제 호우에 대한 침수 양상을 신속하게 예측하는것은 매우 중요하다. 이로 인해 침수 해석에 대한 결과를 빨리 제공할 수 있는 기계학습을 기반으로 한 도시 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM(Long Short-Term Memory) 신경망은 기존 RNN(Recurrent neural network)이 가지고 있는 장기 의존성 문제를 해결하기 위해 고안된 모델으로 시계열 데이터에 대한 예측능력이 뛰어나다는 장점을 가지고있다. LSTM 신경망은 강우에 대한 격자별 침수심을 예측하기 위해 사용되었으며, 입력자료로 2000~2022년도에 걸친 도림천 유역의 침수피해를 야기한 지속시간 6시간 AWS(Automatic Weather System) 관측 강우 자료를 사용하였고 목표값으로 수집된 도림천 유역의 강우자료를 이용하여 SWMM(Storm Water Management Model)의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 사용하였다. 연구유역의 SWMM 배수 관망 입력자료의 정확성을 높이기 위해 서울시 하수관로 수위 현황 자료를 활용하여 매개변수 조정을 실시하였으며, 하수관로의 실측 수위와 모의 수위를 일치시켰다. LSTM 신경망을 이용하여 격자별로 예측된 침수심 데이터를 시각화하여 침수흔적도와 비교하였다.

  • PDF

Generation of Tsunami Inundation Map Method based on Convolution Neural Network (CNN을 이용한 지진해일 최대 범람구역 설정)

  • Jun-Ho Kang;Hyeon-Dong Roh;Yong-Sik Cho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.507-507
    • /
    • 2023
  • 지진해일은 많은 인명피해를 입힐 수 있는 위험한 자연재해이며, 예를 들어 각각 약 25만명과 약 2만명의 사상자가 발생하였던 2004년 수마트라 지진해일과 2011년 동일본 지진해일 등이 있다. 우리나라 동해안 또한 향후 지진 발생 가능성이 큰 지진공백역이 존재하여 안전한 지역으로 볼 수 없다. 지진해일 방재대책 수립과 관련된 연구는 지속적으로 이루어지고 있지만 지진해일의 발생빈도는 적고 완벽히 대응하는 것은 현실적으로 불가능하다. 따라서 본 연구에서는 지진해일 방재대책의 가장 기본적인 자료로 이용될 수 있는 지진해일 침수예상도를 효율적인 방법으로 제작하는 것을 연구했다. 현재 우리나라의 지진해일 최대 침수예상도는 과거 및 향후 발생가능한 지진해일의 경우에 대한 모든 범람구역이 고려된 보수적인 방법으로 제작되고 있다. 지진원의 위치와 각 매개변수의 특성에 따라 범람구역이 다양하게 나타날 수 있기 때문에 보수적인 최대 침수예상도는 과도한 범람구역이 고려될 수 있다. 따라서 본 연구에서는 보수적인 최대 침수예상도와 비교하여 AI기술과 로직트리 기법을 통해 더 정확한 최대 침수예상도를 제작하는 것을 목표로 한다. 연구방법은 1) 고려된 모든 지진해일 시나리오에 대한 수치해석 2) 입력자료인 지진해일 초기수면 변위 이미지 증강 3) CNN모델을 활용한 초기수면 변위 이미지 분류 4) 분류된 결과의 범람 구역으로 최대 침수예상도를 제작하였다. 향후 연구결과는 지진해일 재해정보도 제작 및 지진해일 침수예측 모델 개발에 활용될 수 있을 것이다.

  • PDF