• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.042 seconds

Pattern Classification Algorithm of DNA Chip Image using ANN (신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘)

  • Joo, Jong-Tae;Kim, Dae-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.

Odor Source Tracking of Mobile Robot with Vision and Odor Sensors (비전과 후각 센서를 이용한 이동로봇의 냄새 발생지 추적)

  • Ji, Dong-Min;Lee, Jeong-Jun;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.698-703
    • /
    • 2006
  • This paper proposes an approach to search for the odor source using an autonomous mobile robot equipped with vision and odor sensors. The robot is initially navigating around the specific area with vision system until it looks for an object in the camera image. The robot approaches the object found in the field of view and checks it with the odor sensors if it is releasing odor. If so, the odor is classified and localized with the classification algorithm based on neural network The AMOR(Autonomous Mobile Olfactory Robot) was built up and used for the experiments. Experimental results on the classification and localization of odor sources show the validity of the proposed algorithm.

The Design Method of WiBro System Using the SOFM Blind Equalization (SOFM 자력등화를 이용한 와이브로 시스템 설계 방법)

  • Park, Jin-Woo;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1638-1645
    • /
    • 2008
  • WiBro(Wireless Broadband Internet) is the standard of high-speed portable internet based on OFDMA/TDD techniques, and the subset of consolidated version of IEEE802.16e Wireless MAN standard. In this paper, we propose the design method of WiBro system using the SOFM Blind Equalization. Proposed design method used SOFM neural network blind equalization with Bussgang algorithms in the Broadband 16 QAM WiBro system receiver. To verificate the proposed design method usability, the MSE and the BER are simulated. The simulation results shown that is improved the equalization performances of the proposed WiBro system using the SOFM Blind equalization than the existing WiBro system.

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

Development of Artificial Neural Network Model for Prediction of Water Quality Parameters in Large Rivers with Tributary Inflow (지천유입이 있는 대하천에서 수질예측을 위한 인공신경망모델의 개발)

  • Seo, Il Won;Yun, Se Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.141-141
    • /
    • 2017
  • 본 연구에서는 대하천의 8개의 수질인자(수온, 용존산소, 수소이온농도, 전기전도도, 총질소, 총인, 탁도, 클로로필-a)를 예측할 수 있는 인공신경망모델을 개발하였다. 인공신경망모델(ANN)은 수질데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 데이터기반 모델이다. 데이터기반 모델의 특성상 예측정확도를 높이기 위해서 양질의 입력데이터를 구성하는 것이 가장 중요하다. 때문에 각각의 수질인자뿐만 아니라 기상학적 인자 또한 예측을 위한 입력자료로 사용하였으며, 요인분석 및 층화표층추출법을 적용하여 입력데이터를 구성하였고 앙상블기법을 이용하여 추가적으로 예측의 정확도를 향상시켰다. 개발된 모델을 이용하여 지천유입이 있는 북한강의 수질자료를 예측한 결과 탁도를 제외한 7개의 수질인자 모두 0.85 이상의 설명력을 보였으며, 실측값과 예보값을 비교해본 결과 평균적으로 10% 미만의 에러값을 나타냈다. 요인분석을 통하여 연관성있는 인자를 입력인자로 추가한 경우 향상된 결과값을 보였주었으며, 앙상블기법을 적용한 결과 정확도 면에서 큰 향상을 보여주었다.

  • PDF

Regional Frequency Analysis using the Artificial Neural Network Method - the Han River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 한강유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.300-300
    • /
    • 2016
  • 지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.

  • PDF

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

Water Pipe Deterioration Assessment Using ANN-Clustering (ANN-Clustering을 이용한 상수관로 노후도 평가)

  • Lee, Slee Min;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.110-110
    • /
    • 2018
  • 상수관로의 노후화는 단수유발, 수압부족 및 수질악화, 싱크홀 발생 피해와 누수로 인한 경제적 손실 등을 초래한다. 최근 상수관로의 노후화에 의한 피해가 심각해짐에 따라, 환경부에서는 전국적으로 노후관로를 개량 및 교체하는 작업을 시행하고 있다. 다만, 모든 노후관로를 일시에 보수 및 교체하는 것은 불가능하므로, 사용 중인 관로의 노후도를 정량적으로 판단하여 개량우선순위를 결정해야한다. 현재 국내에서는 '상수도 기술진단' 매뉴얼에 따른 관망성능평가 결과를 이용하여 상수관로의 노후화 정도를 평가하고 있다. 이는 평가항목 별로 기준을 나누어 조건값과 가중치를 부여하고, 총 점수를 합산하여 해당 관로의 평가 점수에 따라 등급을 판정하게 되는 점수평가법이다. 본 연구에서는 기존의 점수평가법과의 비교를 통하여, ANN(Artificial Neural Network)-Clustering 기법이 상수관로의 노후도 평가를 위한 새로운 평가방법이 될 수 있음을 제시하였다. 본 연구는 강원도 Y지역의 상수관로를 대상으로 진행하였으며, 기존의 관망성능평가 항목을 이용하여 전체 관로를 세 가지 등급으로 분류하여 노후도를 평가하였다. 또한 ANN-Clustering방법의 적용 가능성을 판단하기 위하여 기존의 점수평가법 결과와 비교분석을 실시하였으며, 전체 대상관로의 노후도 정도를 직관적으로 파악할 수 있도록 계산된 노후도 등급을 관망도에 도시하였다. ANN-Clustering방법은 관로의 다양한 특성값을 손쉽게 변경하여 적용할 수 있으며, 기존의 점수평가법과 더불어 상수관로의 유지관리를 위한 보다 객관적이고 합리적인 관망성능평가법이 될 수 있을 것으로 기대한다.

  • PDF

Performance Comparison of Machine Learning in the Prediction for Amount of Power Market (전력 거래량 예측에서의 머신 러닝 성능 비교)

  • Choi, Jeong-Gon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.943-950
    • /
    • 2019
  • Machine learning can greatly improve the efficiency of work by replacing people. In particular, the importance of machine learning is increasing according to the requests of fourth industrial revolution. This paper predicts monthly power transactions using MLP, RNN, LSTM, and ANFIS of neural network algorithms. Also, this paper used monthly electricity transactions for mount and money, final energy consumption, and diesel fuel prices for vehicle provided by the National Statistical Office, from 2001 to 2017. This paper learns each algorithm, and then shows predicted result by using time series. Moreover, this paper proposed most excellent algorithm among them by using RMSE.

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Choo, Yeongyu;Park, Jae-hyeon;Kim, Young-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.171-174
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

  • PDF