• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.043 seconds

Tracking System of Photovoltaic Generation Using DFC Controller (DFC 제어기를 이용한 태양광 발전의 추적시스템)

  • Jung, Byung-Jin;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.199-201
    • /
    • 2008
  • In this paper proposed the solar tracking system to use direct fuzzy control order to increase an output of the PV (Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a DFC(Direct Fuzzy Control)controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

A Design of Dangerous Sound Detection Engine of Wearable Device for Hearing Impaired Persons (청각장애인을 위한 웨어러블 기기의 위험소리 검출 엔진 설계)

  • Byun, Sung-Woo;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1263-1269
    • /
    • 2016
  • Hearing impaired persons are exposed to the danger since they can't be aware of many dangerous situations like fire alarms, car hones and so on. Therefore they need haptic or visual informations when they meet dangerous situations. In this paper, we design a dangerous sound detection engine for hearing impaired. We consider four dangerous indoor situations such as a boiled sound of kettle, a fire alarm, a door bell and a phone ringing. For outdoor, two dangerous situations such as a car horn and a siren of emergency vehicle are considered. For a test, 6 data sets are collected from those six situations. we extract LPC, LPCC and MFCC as feature vectors from the collected data and compare the vectors for feasibility. Finally we design a matching engine using an artificial neural network and perform classification tests. We perform classification tests for 3 times considering the use outdoors and indoors. The test result shows the feasibility for the dangerous sound detection.

A Study on Feature Extraction of Partial Discharge Type Using Wavelet Transform (웨이블렛변환을 이용한 부분방전 종류의 특징추출에 관한 연구)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2003
  • In this papers, we proposed the new method in order to diagnosis partial discharge type of transformers. For wavelet transform, Daubechie's filter is used,, we can obtain wavelet coefficients which is used to extract featrue of statistical parameters(maximum value, average value, dispersion, skewness, kurtosis) about high frequency current signal per 3-electrode type(needle-plane electrode, IEC electrode and Void electrode). Also, these coefficients are used to identify signal of internal partial discharge in transformer. As a result, from compare of high frequency current signal amplitude and average value, we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. Otherwise, in case of skewness and kurtosis, we are obtained results of Void electrode> IEC electrode> Needle-Plane electrode. As improved method in order to diagnosis partial discharge type of transformers, we use neural network.

  • PDF

Using Hidden Markov Model for Stock Flow Forecasting (주식 예측을 위한 은닉 마코프 모델의 이용)

  • Park, Hyoung-Joon;Hong, Da-Hye;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

The fabrication of Pt electroplating on ITO multi-electrode array in neuronal signal detection (전극의 임피던스 감소를 위해 백금 도금한 ITO 신경신호 검출용 다중 전극 제작)

  • Kwon, Gwang-Min;Choi, Joon-Ho;Lee, Kyoung-J.;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.257-259
    • /
    • 2002
  • In investigating the characteristics of a neural network, the use of planar microelectrode array shows several advantages over normal intracellular recording[1]. A transparent indium tin oxide(ITO) multi-electrode array(MEA) was fabricated and its top surface was insulated with photodefinable polyimide(HD-8001) except the exposed area for interfacing between the ITO electrodes and the neuronal cells. The exposed ITO electrodes were platinized in order to reduce the impedance between the electrodes and electrolyte. The one-minute platinization with $0.99nA/{\mu}m^2$ current density reduced the average impedance of the electrodes from $2.5M\Omega\;to\;90k\Omega$ at 1kHz in normal ringer solution. Cardiac cells were cultured on this MEA as a pilot study before neuron culture. The signals detected by the platinized electrodes had larger amplitudes and improved signal to noise ratio(SNR) compared to non-platinized electrodes. It is clear that microelectrodes need to have lower impedance to make reliable extracellular recordings, and thus platinization is essential part of MEA fabrication. Burst spike of cultured olfactory bulb was also detected with the MEA having platinized electrodes.

  • PDF

Vision System for NN-based Emotion Recognition (신경회로망 기반 감성 인식 비젼 시스템)

  • Lee, Sang-Yun;Kim, Sung-Nam;Joo, Young-Hoon;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2036-2038
    • /
    • 2001
  • In this paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using vision system. In the proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Also, we use R,G,B(red, green, blue) color image data and the gray image data to get the highly trust rate of feature point extraction. For this, we propose an algorithm to extract four feature points (eyebrow, eye, nose, mouth) from the face image acquired by the color CCD camera and find some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector(position and distance among the feature points). Finally, we show the practical application possibility of the proposed method.

  • PDF

Maximum Torque Control of SynRM with Speed Estimation of ANN (ANN의 속도추정에 의한 SynRM의 최대토크 제어)

  • Ko, Jae-Sub;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1456-1458
    • /
    • 2005
  • In this paper, a new approach for the synchronous reluctance motor control which ensures producing maximum torque per ampere(MIPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The proposed scheme is verified validity through simulation.

  • PDF

Application of an Artificial Neural Network for Estimating Drainage from Paddy Plots (논에서의 지표배수량 산정을 위한 인공신경망기법 적용)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Jang, Jeong-Ryeol;Song, Jung-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.295-295
    • /
    • 2012
  • 영농기간 동안 논에서의 유출량을 정량적으로 파악하기 위해서는 강우와 관개를 고려하여 논에서의 물수지를 파악하여야 한다. 효율적인 물수지를 분석하기 위해서는 관개량과 지표 유출량의 기작을 모니터링하는 것이 중요하지만, 지표 유출량의 경우 현장 관리나 영농 조건 변화 등에 따라 정확한 현장 자료 수집에 어려움이 있다. 따라서, 본 연구에서는 서울대학교 지역시스템공학과에서 운영하고 있는 평택의 논 포장을 연구 대상지로 선정하여 영농기간 동안 모니터링을 실시한 뒤 논에서의 물수지에 요구되는 현장자료를 수집하였다. 모니터링을 통해 수집된 기초 수문 자료를 활용하여 물수지식에 적용한 뒤 논 포장에서의 지표 유출량을 산정하였다. 본 연구에서는 현장 모니터링을 통하여 수집된 담수심, 강우량, 관개량 자료와 증발산량 산정에 있어 보다 큰 영향을 미치는 기상자료를 활용하여 입력자료를 구축한 뒤, 인공신경망 모형을 이용한 지표 유출량 추정 모형을 구성하였다. 모형의 적용성을 평가하기 위하여, 구축된 학습 자료를 이용하여 학습을 수행하여 매개변수를 결정하였고, 그 결과를 바탕으로 유출량의 모의치와 물수지식을 통하여 산정된 유출량 값을 비교하여 모형을 검증하고, 그 결과를 평가하였다. 본 연구에서 제시된 모형은 지속적인 현장 모니터링과 이를 통하여 축적된 장기간의 수문자료를 활용하여 그 성능을 향상시킬 수 있을 것으로 사료된다.

  • PDF

Prediction of Long-term Runoff for Hapcheon Dam Watershed through Multi-Artificial Neural Network Downscaling of KMA's RCM (기상청 RCM전망의 다지점 인공신경망 상세화를 통한 합천댐 유역의 장기유출 전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Kim, Jung-Joong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.948-948
    • /
    • 2012
  • 합천댐유역에 대한 기후변화에 따른 수문학적 영향을 정량적으로 분석하기 위해, 기상청에서 제공하는 공간해상도 27km의 MM5 RCM(Regional Climate Model)을 사용하였다. RCM의 기상변수들은 공간적 스케일의 상이성과 RCM 기후변수들의 불확실성 때문에 유출모형인 SWAT의 입력자료로 사용하기에는 어려움이 있다. 특히, RCM 변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67%이상이 집중되는 계절성을 반영하지 못하고 있는 실정이기 때문에 국내 유역의 유출량 산정에 사용하기 위해서는 지역적 상세화(Downscaling)가 필요하다. 본 연구에서는 RCM 기후변수에 내포된 공간적 스케일의 상이성과 불확실성을 최소화하기 위해 강우관측소 지점을 단위로 한 다지점 인공신경망 기법을 적용하여 강수량, 습도, 최고기온 및 최저기온에 대한 상세화를 실시하였다. 강수의 경우 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline(1991~2010)과 Projection(2011~2100) 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다. 상세화된 기후자료를 이용한 SWAT 모형의 일(Daily) 단위 강우-유출 모의결과를 2011~2040년, 2041~2070년, 2071~2100년으로 구분하여 추세분석을 실시하였다.

  • PDF

Application of an Artificial Neural Network for Estimating Drainage from Paddy Plots (논에서의 지표배수량 산정을 위한 인공신경망기법 적용)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Jang, Jeong-Ryeol;Song, Jung-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.460-460
    • /
    • 2012
  • 영농기간 동안 논에서의 유출량을 정량적으로 파악하기 위해서는 강우와 관개를 고려하여 논에서의 물수지를 파악하여야 한다. 효율적인 물수지를 분석하기 위해서는 관개량과 지표 유출량의 기작을 모니터링하는 것이 중요하지만, 지표 유출량의 경우 현장 관리나 영농 조건 변화 등에 따라 정확한 현장 자료 수집에 어려움이 있다. 따라서, 본 연구에서는 서울대학교 지역시스템공학과에서 운영하고 있는 평택의 논 포장을 연구 대상지로 선정하여 영농기간 동안 모니터링을 실시한 뒤 논에서의 물수지에 요구되는 현장자료를 수집하였다. 모니터링을 통해 수집된 기초 수문 자료를 활용하여 물수지식에 적용한 뒤 논 포장에서의 지표 유출량을 산정하였다. 본 연구에서는 현장 모니터링을 통하여 수집된 담수심, 강우량, 관개량 자료와 증발산량 산정에 있어 보다 큰 영향을 미치는 기상자료를 활용하여 입력자료를 구축한 뒤, 인공신경망 모형을 이용한 지표 유출량 추정모형을 구성하였다. 모형의 적용성을 평가하기 위하여, 구축된 학습 자료를 이용하여 학습을 수행하여 매개변수를 결정하였고, 그 결과를 바탕으로 유출량의 모의치와 물수지식을 통하여 산정된 유출량 값을 비교하여 모형을 검증하고, 그 결과를 평가하였다. 본 연구에서 제시된 모형은 지속적인 현장 모니터링과 이를 통하여 축적된 장기간의 수문자료를 활용하여 그 성능을 향상시킬 수 있을 것으로 사료된다.

  • PDF