Journal of information and communication convergence engineering
/
v.2
no.2
/
pp.132-137
/
2004
Most of the current computer vision theories are based on hypotheses that are difficult to apply to the real world, and they simply imitate a coarse form of the human visual system. As a result, they have not been showing satisfying results. In the human visual system, there is a mechanism that processes information due to memory degradation with time and limited storage space. Starting from research on the human visual system, this study analyzes a mechanism that processes input information when information is transferred from the retina to ganglion cells. In this study, a model for the characteristics of ganglion cells in the retina is proposed after considering the structure of the retina and the efficiency of storage space. The MNIST database of handwritten letters is used as data for this research, and ART2 and SOM as recognizers. The results of this study show that the proposed recognition model is not much different from the general recognition model in terms of recognition rate, but the efficiency of storage space can be improved by constructing a mechanism that processes input information.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.10
/
pp.1981-1986
/
2009
This paper presents new matting techniques. The matting is an alpha estimation technique of object in an image. We can extract the object in an image naturally using the matting technique. The proposed algorithms begin by segmenting an image into three regions: definitely foreground, definitely background, and unknown. Then we estimate foreground, background, and alpha for all pixels in the unknown region. The proposed algorithms learn the definitely foreground and definitely background using self-organizing map(SOM), and estimate an alpha value of each pixel in the unknown region using SOM learning result. SOM matting is distinguished between global SOM matting and local SOM matting by learning method. Experiment results show the proposed algorithms can extract the object in an image.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.981-984
/
2010
In this paper, we used Support Vector Machines(SVMs) as the learning method, one of Artificial Neural Network, to segregated from the continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. A Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Speech recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme segregated from the eye-measurement. From the simulation results, we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.197-200
/
2010
The development of service industries like more information on each individual's comments are provided only for wanting to receive services that do not like the prolonged waiting time. However, existing venues, theaters, libraries and seating management systems to suit the individual seating arrangements can not automatically provide information and give everyone the same. In this paper these issues to improve the fit of personal preference or personal inclination of the body in condition to meet intelligently deployed seats, and can provide information only preferred system is proposed. To verify the proposed system's performance using any of the theater seating chart for the experiments was to check to see better performance could be seen.
Jo, Seung-Gun;Jeon, Hyun-Jin;No, Hyun-Chan;Shin, Sang-Ho;Kim, Kwang-Baek
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.189-192
/
2010
본 논문에서는 개선된 Fuzzy ART 알고리즘을 이용하여 한의학을 기반으로 증상에 대한 질병을 진단하고 민간요법을 제시하는 한방 자가 검진 시스템을 제안한다. 제안된 방법은 신체 부위를 전신, 머리, 배, 다리 등 17부위로 분류하여 사용자가 증상을 선택하도록 제시하고, 사용자가 선택한 증상과 질병에 포함된 증상 그리고 결과로 도출될 질병간의 선택증상 비율에 대한 우선순위를 개선된 Fuzzy ART 알고리즘에 적용하여 증상을 분류한 후, 퍼지 추론 규칙을 적용하여 질병을 도출한다. 도출된 질병과 그 질병에 대한 원인 및 민간요법을 결과로 제시한다. 데이터베이스에 구축되어 있는 질병 데이터는 통계청에서 정리하여 배포한 한국표준질병 사인분류(K.C.D)를 토대로 표준 질병 정보를 얻어 각 질병의 증상과 원인, 민간요법을 정리한 후, 마지막으로 한의학 전문의의 검증을 거쳐 데이터베이스를 구축하였다. 제안된 한방 자가 검진 시스템에 대한 한의학 전문의의 분석 및 검증 결과, 본 시스템의 증상에 대한 질병 도출이 높은 정확도를 보임을 확인하였다.
Customer retention is a common concern for many industries and a critical issue for the survival in today's greatly compressed marketplace. Current customer retention models only focus on detection of potential defectors based on the likelihood of defection by using demographic and customer profile information. In this paper, we propose a dynamic procedure for defection detection and prevention using past and current customer behavior by utilizing SOM and Markov chain. The basic idea originates from the observation that a customer has a tendency to change his behavior (i.e. trim-out his usage volumes) before his eventual withdrawal. This gradual pulling out process offers the company the opportunity to detect the defection signals. With this approach, we have two significant benefits compared with existing defection detection studies. First, our procedure can predict when the potential defectors could withdraw and this feature helps to give marketing managers ample lead-time for preparing defection prevention plans. The second benefit is that our approach can provide a procedure for not only defection detection but also defection prevention, which could suggest the desirable behavior state for the next period so as to lower the likelihood of defection. We applied our dynamic procedure for defection detection and prevention to the online gaming industry. Our suggested procedure could predict potential defectors without deterioration of prediction accuracy compared to that of the MLP neural network and DT.
Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.
캡술내시경은 식도부터 항문까지 소화기관 전체를 한번에 촬영할 수 있는 의료기기로, 한번의 검사에 평균 8~12 시간 정도의 길이와 5만장 이상의 프레임으로 구성된 영상을 생성한다. 그러나 생성된 영상에 대한 분석은 수작업으로 진행되고 있어, 캡술내시경 영상 분석 자동화에 대한 기술적인 수요가 높아지고 있는 추세이다. 이를 위해, 캡슐내시경 영상 분석에 대한 많은 연구가 진행되고 있는데, 본 연구에서는 그 중에서도 폴립 영상에 대한 검출 자동화 연구에 주목하였다. 폴립이란 위장관 내에서 발견될 수 있는 융기성 병변으로, 많은 연구에서 기계학습 혹은 딥러닝 방식을 적용하여 이를 검출하기 위한 연구를 수행하였다. 그러나 캡슐내시경 영상의 특성상, 병번이 있는 영상이 굉장히 적기 때문에 일반적인 딥러닝 방식의 적용으로 좋은 성능을 내기 어렵다. 따라서 본 논문에서는 폴립 검출 컨볼루션 신경망 설계를 위한 멀티 스케일에 대한 원형 검출기법을 결합하여 폴립이 의심되는 영역을 추출해주는 특징 추출 기법으로, 수집한 데이터 150장에 대한 실험한 결과 약 82%의 성능을 보였다.
캐시 부채널 공격 중 하나인 FLUSH+RELOAD 공격은 높은 해상도와 적은 오류로 그 위험성이 높고, 여러가지 프로그램에서도 적용되어 개인정보의 유출에 대한 위험성까지 증명 되었다. 따라서 이 공격을 막기 위해 실시간으로 감지 할 수 있어야 할 필요성이 있다. 본 연구에서는 4가지 실험을 통하여 이 FLUSH+RELOAD 공격을 받을 때 PCM(Performance Counter Monitor)를 사용해 각각의 counter들의 값의 변화를 관찰하여 3가지 중요한 요인에 의해 공격 탐지를 할 수 있다는 것을 발견하였다. 이를 이용하여 머신 러닝의 logistic regression과 ANN(Artificial Neural Network)를 사용해 결과에 대한 각각 학습을 시킨 뒤, 실시간으로 공격에 대한 탐지를 할 수 있는 프로그램을 제작하였다. 일정한 시간동안 공격을 진행하여 모든 공격을 감지하는데 성공하였고, 상대적으로 적은 오탐률을 보여주었다.
The Transactions of the Korea Information Processing Society
/
v.6
no.2
/
pp.543-551
/
1999
The primary purposes in this paper are to analyze the class separation of features in handwritten numeral recognition and to make use of the results in feature selection. Using the Parzen window technique, we compute the class distributions and define the class separation to be the overlapping distance of two class distributions. The dimension of a feature vector is reduced by removing the void or redundant feature cells based on the class separation information. The experiments have been performed on the CENPARMI handwritten numeral database, and partial classification and full classification have been tested. The results show that the class separation is very effective for the feature selection in the 10-class handwritten numeral recognition problem since we could reduce the dimension of the original 256-dimensional feature vector by 22%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.