• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.044 seconds

A Modeling and Optimal Site of SMES for Power System Stabilization (계통안정화를 위한 SMES의 모델링과 적정위치 선정)

  • Kim, Jeong-Hun;Im, Jae-Yun;Lee, Jong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.494-501
    • /
    • 1999
  • In this research, ANN modeling method of SMES unit is developed for stability analysis, and the optimal site is selected to maximize stabilization effect of SMES unit. The ANN is trained by learning data which is obtained through the application of complex test function into the traditional mathematical mode. In order to verify the validity of proposed modeling method, fault data of sample power system is applied to both the traditional and the ANN models. When the response of traditional and proposed models are compared, the average error for the active and reactive power are 2.51[%], and 0.24[%], respectively. From the comparison, the relevance of proposed method is validated. For the transient stability analysis, an application method of the proposed model is presented, and the transient stability performance index, which describes system stabilization effect of SMES at disturbance, is also suggested, and optimal site selection method of SMES is presented. In the viewpoint of the voltage stability, system stabilization criterion of local bus is presented from P­V curve, and then optimal site which can maximize the voltage stabilization of the whole power system, is decided from the proposed voltage stability performance index.

  • PDF

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

2-DOF PID Control for the Steam Temperature Control of Thermal Power Plant

  • Kim, Dong-Hwa;Hong, Won-Pyo;Jung, Chang-Gi;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2123-2125
    • /
    • 2001
  • In thermal power plant, the efficiency of a combined power plant with a gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a separated 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul. Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired, and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controller.

  • PDF

A study on motion prediction and subband coding of moving pictuers using GRNN (GRNN을 이용한 동영상 움직임 예측 및 대역분할 부호화에 관한 연구)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • In this paper, a new nonlinear predictor using general regression neural network(GRNN) is proposed for the subband coding of moving pictures. The performance of a proposed nonlinear predictor is compared with BMA(Block Match Algorithm), the most conventional motion estimation technique. As a result, the nonlinear predictor using GRNN can predict well more 2-3dB than BMA. Specially, because of having a clustering process and smoothing noise signals, this predictor well preserves edges in frames after predicting the subband signal. This result is important with respect of human visual system and is excellent performance for the subband coding of moving pictures.

A Study of Cheater Detection in FPS Game by using User Log Analysis (사용자 로그 분석을 통한 FPS 게임에서의 치팅 사용자 탐지 연구: 인공 신경망 알고리즘을 중심으로)

  • Park, Jung Kyu;Han, Mee Lan;Kim, Huy Kang
    • Journal of Korea Game Society
    • /
    • v.15 no.3
    • /
    • pp.177-188
    • /
    • 2015
  • In-game cheating by the use of unauthorized software programs has always been a big problem that they can damage in First Person Shooting games, although companies operate a variety of client security solutions in order to prevent games from the cheating attempts. This paper proposes a method for detecting cheaters in FPS games by using game log analysis in a server-side. To accomplish this, we did a comparative analysis of characteristics between cheaters and general users focused on commonly loaded logs in the game. We proposed a cheating detection model by using artificial neural network algorithm. In addition, we did the performance evaluation of the proposed model by using the real dataset used in business.

Deep Learning Based Object Recognition in Spherical Panoramic Image (구면 파노라마 영상에서의 딥러닝 기반 객체 인식)

  • Jung, Minsuk;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.5-14
    • /
    • 2018
  • A lot of research has been done on image recognition technique for planar images and the performance has also been improved. However, it is difficult to recognize objects in spherical panoramic images or images in special form which are given in various environments because of the spherical distortion given in different form from the planar case. In this paper, we show that the neural network recognition approach can be used for object recognition in spherical image and suggest a method of using cubemap transform in order to increase recognition accuracy in spherical image.

Discrimination of Insulation Defects in a Gas Insulated Switchgear (GIS) by use of a Neural Network Based on a Chaos Analysis of Partial Discharge (CAPD)

  • Jung, Seoung-Yong;Ryu, Cheol-Hwi;Lim, Yun-Sok;Lee, Ja-Ho;Koo, Ja-Yoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.118-122
    • /
    • 2007
  • In this work, experimental investigation is carried out in order to design and fabricate the UHF sensor that is able to detect the partial discharges produced from 10 artificial defects introduced into the real scale 70kV GIS mock-up under high voltage within a well shielded room. As well, in order to verify the on-site applicability of our method, the newly proposed CAPD (chaos analysis of partial discharge) is combined with spectral analysis for identifying the nature of 10 artificial defects under investigation. The PD pattern recognition of each defect has been fulfilled by applying our ANN software. The result indicates that the recognition rate reaches up to 80% by the newly proposed method while the traditional PRPD analysis method allows us to obtain 41%. In consequence, it can be pointed out that the proposed method seems likely to be applicable to the real GIS at the site.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.

Pattern Recognition of PD by Particles in GIS (GIS내 파티클에 의한 PD의 패턴인식)

  • 곽희로;이동준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • This paper describes the quantitative analysis and the pattern recognition of partial discharge signals generated by particles in GIS. Four states of particles were simulated in this paper. Partial discharge signals from each state was measured and the Ф-Q-N distribution of partial discharge signals was displayed and then the Ф-Q, the Ф-Qm, the Ф-N and the Q-N distribution were displayed. Each distribution can be quantitatively represented by statistical parameters and the parameters were used for input data of pattern recognition. As the results, it was found that the forms of each distribution were different according to the particle states. Recognition rate using neural network was about 92〔%〕 and the more input data number, the more accurate results.

A Study of Dynamic Forecast on Port Container Handling Capacity (항만 컨테이너 처리능력의 통계적 예측에 관한 연구)

  • Feng, Zhan-Qing;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2002
  • In view of the great disparity between forecasts of Shanghai port container handling capacity and its real results, we choose a dynamic forecast method by the causality model dynamic compensation to predict Shanghai port container handling capacity. And we forecast Shanghai port container handling capacity by using this method. We have made a satisfactory achievement, which provides a more reliable and practical way to forecast container handling capacity.