• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.04 seconds

CREATING JOYFUL DIGESTS BY EXPLOITING SMILE/LAUGHTER FACIAL EXPRESSIONS PRESENT IN VIDEO

  • Kowalik, Uwe;Hidaka, Kota;Irie, Go;Kojima, Akira
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.267-272
    • /
    • 2009
  • Video digests provide an effective way of confirming a video content rapidly due to their very compact form. By watching a digest, users can easily check whether a specific content is worth seeing in full. The impression created by the digest greatly influences the user's choice in selecting video contents. We propose a novel method of automatic digest creation that evokes a joyful impression through the created digest by exploiting smile/laughter facial expressions as emotional cues of joy from video. We assume that a digest presenting smiling/laughing faces appeals to the user since he/she is assured that the smile/laughter expression is caused by joyful events inside the video. For detecting smile/laughter faces we have developed a neural network based method for classifying facial expressions. Video segmentation is performed by automatic shot detection. For creating joyful digests, appropriate shots are automatically selected by shot ranking based on the smile/laughter detection result. We report the results of user trials conducted for assessing the visual impression with automatically created 'joyful' digests produced by our system. The results show that users tend to prefer emotional digests containing laughter faces. This result suggests that the attractiveness of automatically created video digests can be improved by extracting emotional cues of the contents through automatic facial expression analysis as proposed in this paper.

  • PDF

Geneation of Optimized Robotic Assembly Sequences Via Simulated Annealing Method (자동조립에서 시뮬레이트 어닐링을 이용한 조립순서 최적화)

  • Hong, Dae-Sun;Cho, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.213-221
    • /
    • 1996
  • An assembly sequence is considered to be optimal when is minimizes assembly cost while satisfying assembly constraints. To derive such an optimal sequence for robotic assembly, this paper proposes a method using a simulated annealing algorithm. In this method, an energy funciton is derived inconsideration of both the assembly constraints and the assembly cost. The energy function thus derived is iteratively minimized until no further change in energy occurs. During the minimization, the energy is occationally perturbed probabilistically in order to escape from local minima. The minimized energy yields an optimal assembly sequence. To show the effectiveness of the proposed method, case studies are presented for industrial products such as an electrical relay and an automobil alternator. The performance is analyzed by comparing the results with those of a neural network-based method, based upon the optimal solutions of an expert system.

Development of Checker-Switch Error Detection System using CNN Algorithm (CNN 알고리즘을 이용한 체커스위치 불량 검출 시스템 개발)

  • Suh, Sang-Won;Ko, Yo-Han;Yoo, Sung-Goo;Chong, Kil-To
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.38-44
    • /
    • 2019
  • Various automation studies have been conducted to detect defective products based on product images. In the case of machine vision-based studies, size and color error are detected through a preprocessing process. A situation may arise in which the main features are removed during the preprocessing process, thereby decreasing the accuracy. In addition, complex systems are required to detect various kinds of defects. In this study, we designed and developed a system to detect errors by analyzing various conditions of defective products. We designed the deep learning algorithm to detect the defective features from the product images during the automation process using a convolution neural network (CNN) and verified the performance by applying the algorithm to the checker-switch failure detection system. It was confirmed that all seven error characteristics were detected accurately, and it is expected that it will show excellent performance when applied to automation systems for error detection.

Development of Nonlinear Downscaling Technique to Use GCM Data (GCM 자료를 활용하기 위한 비선형 축소기법의 개발)

  • Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Hung-Soo;Jun, Hwan-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.73-73
    • /
    • 2011
  • 일반적으로 미래 기후자료를 산출하기 위하여 기후 시스템을 수치화한 GCM에 의한 결과를 사용한다. 하지만 GCM의 시공간적인 해상도의 문제로 기후변화에 따른 수자원 영향 분석을 위해서는 축소기법의 적용과정이 필요하다. 이를 위하여 전세계적으로 통계학적 방법에 의한 일기발생기를 이용한 축소기법 방법이 많이 이용되고 있다. 하지만 일기발생기에 의한 방법은 월 평균값의 연간 변동성이나 계절적 변화를 재현하는데 한계가 있는 것이 사실이다. 본 연구에서는 이러한 일기 발생기의 한계가 강우의 발생 특성이 평균과 표준편차로 대표되는 통계학적 기법에 근거하고 있기 때문이라고 파악하였다. 따라서 최저온도, 최고온도, 강수량, 상대습도, 풍속, 일사량과 같이 6개의 기상자료를 선정하여 비선형 관계를 고려할 수 있는 기법을 적용하고자 하였다. 이를 위하여 SRES A1B 기후변화 시나리오에 의한 CNCM3 기후모형의 결과를 이용하였고 각 관측소 마다 다양하게 발생하는 강우 특성은 과거의 강우 특성과 유사할 것이라는 가정하에 공간적 축소기법으로 인공 신경망(ANN: Artificial Neural Network) 을 적용하고 시간적 축소기법으로 최근린(NN: Nearest Neighbor) 방법과 유전자 알고리즘(GA: Genetic Algorithm)을 적용하는 기법을 함께 제시하였다. 이러한 기법들을 실제 남한강 유역의 기상관측소 지점으로 적용하여 검증한 결과 모의된 대부분의 기상자료가 관측치를 비교적 잘 재현하였다. 본 연구에서 제시한 비선형 축소기법은 추후 기후변화 연구에 중요한 방법론으로 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on the Neural Network Model for Soil Moisture Estimation (토양수분 추정을 위한 신경망 모형 개발에 관한 연구)

  • Kim, Gwang-Seob;Park, Jung-A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.408-408
    • /
    • 2011
  • 수자원관리와 수문모형에 있어 강수, 증발산, 침투, 침루 등의 물 순환과정에 대한 실질적인 이해와 분석연구의 중요도가 높아지고 있는 실정이며, 그중에서도 토양수분은 강수의 침투, 유출 등의 지표면과 대기사이의 질량 및 에너지이동에 관여하는 중요한 요소로서 수자원 및 수문현상에 직접적인 영향을 미친다. 이를 위해 강수, 증발산, 토양수분과 같은 수문변수에 대한 다양한 관측이 실시되어야 하지만 국내에서는 지속적이고 안정적으로 지상관측을 할 수 없는 실정이며 관련 기반기술도 매우 취약하다. 따라서 이를 극복하기 위해서는 위성영상자료를 이용함으로써 한반도 전체에 대한 광역적인 토양수분자료의 획득을 용이하게 한다. 본 연구의 연구유역은 수자원 연구를 위해서 지정된 용담댐 시험유역으로 하였으며, 토양수분 관측지점의 지상관측 수문자료인 각 지점별 강수량, 지면온도, 인공위성자료인 MODIS 정규식생지수 등의 가용자료를 수집하고 신경망모형을 활용한 토양수분자료 생산 모형을 개발하여, 개선된 시공간 분해능과 공간정보 대표성을 가진 광역 토양수분자료를 생산하고 적용타당성을 분석하였다. 산정된 토양수분모형의 적용가능성을 파악하고자 용담댐 유역의 각 지점별 토양수분 관측데이터와 추정데이터를 비교한 결과 추천, 부귀, 상정 지점의 경우 평균 약 0.9257의 상관계수와 약 1.2917의 평균제곱근오차를 보였고, 검증지점인 천천2의 경우 약 0.8982의 상관계수와 약 5.1361의 평균제곱근오차의 결과를 보여주었으며 토양수분 추정모형의 적용가능성이 높음을 확인할 수 있었다.

  • PDF

Language Learning System Evaluating the Quality of a Handwriting String (필기문자열의 품질평가를 통한 언어학습시스템)

  • Kim Gye-Young
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.159-164
    • /
    • 2005
  • In a computing environment connected pan-based computers and a server by Internet, This paper describes a language learning system evaluating the quality of a handwriting string. For the purpose of the system, this paper explains how to retrieve reference data from a database, how to evaluate the quality of a handwriting string using global and local features. The Proposed system can evaluate the qualify of a handwriting string as well as a handwriting character. The qualify can be computed in the case of different language between reference and input. Therefore, we expect that the system is very useful not only for training on handwriting but also learning a language.

Algorithm Based on Texture for the Recognition of Vehicles' Model (질감을 이용한 차량모델 인식 알고리즘)

  • Lee Hyo Jong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.257-264
    • /
    • 2005
  • The number of vehicles are rapidly increased as our society is developed. The vehicle recognition has been studied for a while because many people acknowledged it has critical functions to solve the problems of traffic control or vehicle-related crimes. In this paper a novel method is proposed to recognize vehicle models corresponding makers. Vehicles' models are recognized based on the texture parameters from segmented radiator region above a number plate. A three-layer neural network was built and trained with the texture features for recognition. The proposed method shows $93.7\%$ of recognition rate and $99.7\%$ of specificity for vehicles' model.

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

A Study on the Feasibility of Self-Organizing Net for the Pattern Recognition (패턴인식을 위한 자율조직망의 적용가능성에 관한 연구)

  • 정은호;김진구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.403-412
    • /
    • 1991
  • This paper proposes a type of self organizing neural network which recognizes arbitrary symbols as well as numerical or alphabetic characters. The proposed algorithm autonomically organizes and classifies similar patterns on the basis of the distribution types of characteristics in the input images. Thus it can be appliced for the recognition of arbitrary images when it is difficult to establish a learning rule. It performs a stale recognition process with in the limit of the memory capacity. The cheme was applied and tested to 50 different image patterns with increased noise level up to 44%(SNR 2dB). The implementation results demonstrate that the proposed algorithm successfully recognizes the image patterns changed due to the various noise levels and thus proves excellent antinoise characteristics.

  • PDF

Anomaly Classification of Railway Point Machine Using Sound Information and DNN (소리정보와 DNN을 이용한 선로전환기의 비정상 상황 분류)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yonghwa;Kim, Heeyoung;Yoon, SukHan
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.611-614
    • /
    • 2016
  • 최근 철도 산업의 비중이 증가함에 따라 열차의 안정적인 주행이 그 어느 때보다 중요한 이슈로 부각되고있다. 특히, 열차의 진로 변경을 위한 핵심 요소인 선로전환기의 결함은 열차의 사고와 직결되는 장비 중 하나로써, 그 이상 여부를 사전에 인지하여 선로전환기의 안정성을 확보하기 위한 유지보수의 지능화 시스템이 필요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리정보를 활용하여 선로전환기의 비정상 상황을 분류하는 시스템을 제안한다. 제안하는 시스템은 먼저, 선로전환기의 상황별 소리를 수집하고, 다양한 소리정보를 추출하여 특징 벡터를 생성한다. 다음으로, 딥러닝 모델 중 하나인 DNN(Deep Neural Network)을 이용하여 선로전환기의 비정상 상황을 분류한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 기반으로 DNN의 파라미터에 따른 다양한 실험을 수행한 결과, 약 93.10%의 정확도를 갖는 안정적인 DNN 모델을 설계하였다.