• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.037 seconds

Design of Pedestrian Detection System Based on Optimized pRBFNNs Pattern Classifier Using HOG Features and PCA (PCA와 HOG특징을 이용한 최적의 pRBFNNs 패턴분류기 기반 보행자 검출 시스템의 설계)

  • Lim, Myeoung-Ho;Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1345-1346
    • /
    • 2015
  • 본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.

  • PDF

MPPT of photovoltaic system with duty ratio of DC-DC converter considered load (부하를 고려한 DC-DC 컨버터의 듀티비에 따른 태양광 발전 시스템의 최대전력점 추적)

  • Jun, Young-Sun;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.407-410
    • /
    • 2008
  • This paper presents a maximum power point tracking(MPPT) of photovoltaic system with duty ratio of DC-DC converter considered load. A variation of solar irradiation is most important factor in the MPPT of PV system That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. The paper consists of solar radiation source, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an adaptive control of neural network, calculates converter-duty ratio using an adaptive control of NN. The results of an adaptive control of NN compared with the results of converter-duty ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

  • PDF

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS

  • Ozturk, Murat;Cansiz, Omer F.;Sevim, Umur K.;Bankir, Muzeyyen Balcikanli
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • In this study alkali activation of Electric Arc Furnace Slag (EAFS) is studied with a comprehensive test program. Three different silicate moduli (1-1,5-2), three different sodium concentrations (4%-6%-8%) for each silicate module, two different curing conditions (45%-98% relative humidity) for each sodium concentration, two different curing temperatures ($400^{\circ}C-800^{\circ}C$) for each relative humidity condition and two different curing time (6h-12h) for each curing temperature variables are selected and their effects on compressive strength was evaluated then regression equations using multiple linear regressions methods are fitted. And then to select the best regression models confirm with using the variables, the regression models compared between itself. An Artificial Neural Network (ANN) models that use silicate moduli, sodium concentration, relative humidity, curing temperature and curing time variables, are formed. After the investigation of these ANN models' results, ANN and multiple linear regressions based models are compared with each other. After that, an explicit formula is developed with values of the ANN model. As a result of this study, the fluctuations of data set of the compressive strength were very well reflected using both of the methods, multiple linear regression with quadratic terms and ANN.

Caption Detection and Recognition for Video Image Information Retrieval (비디오 영상 정보 검색을 위한 문자 추출 및 인식)

  • 구건서
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.7
    • /
    • pp.901-914
    • /
    • 2002
  • In this paper, We propose an efficient automatic caption detection and location method, caption recognition using FE-MCBP(Feature Extraction based Multichained BackPropagation) neural network for content based retrieval of video. Frames are selected at fixed time interval from video and key frames are selected by gray scale histogram method. for each key frames, segmentation is performed and caption lines are detected using line scan method. lastly each characters are separated. This research improves speed and efficiency by color segmentation using local maximum analysis method before line scanning. Caption detection is a first stage of multimedia database organization and detected captions are used as input of text recognition system. Recognized captions can be searched by content based retrieval method.

  • PDF

Moving Shadow Detection using Deep Learning and Markov Random Field (딥 러닝과 마르코프 랜덤필드를 이용한 동영상 내 그림자 검출)

  • Lee, Jong Taek;Kang, Hyunwoo;Lim, Kil-Taek
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1432-1438
    • /
    • 2015
  • We present a methodology to detect moving shadows in video sequences, which is considered as a challenging and critical problem in the most visual surveillance systems since 1980s. While most previous moving shadow detection methods used hand-crafted features such as chromaticity, physical properties, geometry, or combination thereof, our method can automatically learn features to classify whether image segments are shadow or foreground by using a deep learning architecture. Furthermore, applying Markov Random Field enables our system to refine our shadow detection results to improve its performance. Our algorithm is applied to five different challenging datasets of moving shadow detection, and its performance is comparable to that of state-of-the-art approaches.

Narrowband to Wideband Conversion of Speech using Modularized Neural Network (모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환)

  • Woo Dong Hun;Ko Charm Han;Kang Hyun Min;Kim Yoo Shin;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

Development of Customized Strategy for Enhancing Automobile Repurchase Using Data Mining Techniques (자동차 재구매 증진을 위한 데이터 마이닝 기반의 맞춤형 전략 개발)

  • Lee, Dong-Wook;Choi, Keun-Ho;Yoo, Dong-Hee
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 2017
  • Purpose Although automobile production has increased since the development of the Korean automobile industry, the number of customers who can purchase automobiles decreases relatively. Therefore, automobile companies need to develop strategies to attract customers and promote their repurchase behaviors. To this end, this paper analyzed customer data from a Korean automobile company using data mining techniques to derive repurchase strategies. Design/methodology/approach We conducted under-sampling to balance the collected data and generated 10 datasets. We then implemented prediction models by applying a decision tree, naive Bayesian, and artificial neural network algorithms to each of the datasets. As a result, we derived 10 patterns consisting of 11 variables affecting customers' decisions about repurchases from the decision tree algorithm, which yielded the best accuracy. Using the derived patterns, we proposed helpful strategies for improving repurchase rates. Findings From the top 10 repurchase patterns, we found that 1) repurchases in January are associated with a specific residential region, 2) repurchases in spring or autumn are associated with whether it is a weekend or not, 3) repurchases in summer are associated with whether the automobile is equipped with a sunroof or not, and 4) a customized promotion for a specific occupation increases the number of repurchases.

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.