• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.034 seconds

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

Modified neocognitron for recognizing multi-patterns (복수 패턴 인식을 위한 변형된 네오코그니트론)

  • 김태우;최병욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.140-148
    • /
    • 1994
  • In this paepr, the modified neocognitron, which has capability of recognizing multi-patterns in input image in one pass, is proposed. It is the hierarchical neural network composed of S and V layer which are able to extract features and of C layer with little effect from deformation, changes in size, shifts in position. S and V cells extract the features of all patterns in input image by applying DCC(don't care condition) to those cells. S and C cells also have position informations of extracted patterns. Position information is used in extracting good features without extracted features beting interfered one another. The proposed method is shorter in recognition time than the selective attention method with backward connection, because of recognizing multi-patterns in one passe. The modified neocognitron can recognizze attached multi-patterns because of using DCC and position informations.

  • PDF

Auto-Tuning Method of Learning Rate for Performance Improvement of Backpropagation Algorithm (역전파 알고리즘의 성능개선을 위한 학습율 자동 조정 방식)

  • Kim, Joo-Woong;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • We proposed an auto-tuning method of learning rate for performance improvement of backpropagation algorithm. Proposed method is used a fuzzy logic system for automatic tuning of learning rate. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust learning rate. The inputs of fuzzy logic system are ${\Delta}$ and $\bar{{\Delta}}$, and the output is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on a N-parity problem, function approximation, and Arabic numerals classification. The results show that the proposed method has considerably improved the performance compared to the backpropagation, the backpropagation with momentum, and the Jacobs' delta-bar-delta.

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

Efficient Swimmer Detection Algorithm using CNN-based SVM

  • Hong, Dasol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.79-85
    • /
    • 2017
  • In this paper, we propose a CNN-based swimmer detection algorithm. Every year, water safety accidents have been occurred frequently, and accordingly, intelligent video surveillance systems are being developed to prevent accidents. Intelligent video surveillance system is a real-time system that detects objects which users want to do. It classifies or detects objects in real-time using algorithms such as GMM (Gaussian Mixture Model), HOG (Histogram of Oriented Gradients), and SVM (Support Vector Machine). However, HOG has a problem that it cannot accurately detect the swimmer in a complex and dynamic environment such as a beach. In other words, there are many false positives that detect swimmers as waves and false negatives that detect waves as swimmers. To solve this problem, in this paper, we propose a swimmer detection algorithm using CNN (Convolutional Neural Network), specialized for small object sizes, in order to detect dynamic objects and swimmers more accurately and efficiently in complex environment. The proposed CNN sets the size of the input image and the size of the filter used in the convolution operation according to the size of objects. In addition, the aspect ratio of the input is adjusted according to the ratio of detected objects. As a result, experimental results show that the proposed CNN-based swimmer detection method performs better than conventional techniques.

An Implementation of Syntactic Constituent Recognizer Using Connectionism (Connectionism을 이용한 부분 구문 인식기의 구현)

  • Jung, Han-Min;Yuh, Sang-Hwa;Kim, Tae-Wan;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.479-483
    • /
    • 1996
  • 본 논문은 구운 분석의 검색 영역 축소를 통한 구문 분석기의 성능 향상을 목적으로 connectionism을 이용한 부분 구문 인식기의 설계와 구현을 기술한다. 본 부분 구문 인식기는 형태소 분석된 문장으로부터 명사-주어부와 술어부를 인식함으로써 전체 검색 영역을 여러 부분으로 나누어 구문 분석문제를 축소시키는 것을 목적으로 하고 있다. Connectionist 모델은 입력층과 출력층으로 구성된 개선된 퍼셉트론 구조이며, 입/출력층 사이의 노드들을, 입력층 사이의 노드들을 연결하는 연결 강도(weight)가 존재한다. 명사-주어부 및 술어부 구문 태그를 connectionist 모델에 적용하며, 학습 알고리즘으로는 개선된 백프로퍼게이션 학습 알고리즘을 사용한다. 부분 구문 인식 실험은 112개 문장의 학습 코퍼스와 46개 문장의 실험 코퍼스에 대하여 85.7%와 80.4%의 정확한 명사-주어부 및 술어부 인식을, 94.6%와 95.7%의 명사-주어부와 술어부 사이의 올바른 경계 인식을 보여준다.

  • PDF

Electrooptic pattern recognition system by the use of line-orientation and eigenvector features (방향선소와 고유벡터 특징을 이용한 전기광학적 패턴인식 시스템)

  • 신동학;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.403-409
    • /
    • 1997
  • We proposed a system that can perform pattern recognition based on parrallel optical feature extraction and performed experiments on this. The feature to be extracted are both 6 simple line orientations and two eigenvectors of the covariance matrix of the patterns that cannot be distinguished with the line orientation features alone. Our system consists of a feature-extraction part and a pattern-recognition part. The former that extracts the features in parallel with the multiplexed Vander Lugt filters was implemented optically, while the latter that performs the pattern recognition by the use of the extracted features was implemented in a computer. In the pattern recognition part, two methods are tested;one is to use an artificial neural network, which is trained to recognize the features directly, the other is to count the numbers of specific features simply and then to compare them with the stored reference feature numbers. We report the preliminary experimental results tested for 15 alpabet patterns with only straight line segments.

  • PDF