• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.038 seconds

Deep Learning-based Analysis of Meat Freshness Measurement (고기 신선도 측정 데이터의 딥러닝 기반 분석)

  • Jang, Aera;Kim, Hey-Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.418-427
    • /
    • 2020
  • The measurement of meat freshness at meat markets is important for the health of consumers. Currently a variety of sensors have been studied for the measurement of the meat freshness. Therefore, the analysis of sensor data is needed for the reduction of measurement errors. In this paper, we analyze the freshness measurement data of ten sensors based on deep learning. The measured data are composed of beef, pork and chicken, whose reliability and noise-robustness are examined by a deep neural network. Further, to search for multiple sensors better than a torrymeter, PCA (principle component analysis) is carried. Then, we validated that the performance of the three sensors outperforms the torrymeter in the experiment.

Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools (CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술)

  • Park, Hui-Jae;Lee, Seok-Won;Gwon, Hyeok-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • Lee, Jae-Ha;Lee, Jin-Hyeon;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Investigation of pressure-volume-temperature relationship by ultrasonic technique and its application for the quality prediction of injection molded parts

  • Kim Jung Gon;Kim Hyungsu;Kim Han Soo;Lee Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.163-168
    • /
    • 2004
  • In this study, an ultrasonic technique was employed to obtain pressure-volume-temperature (PVT) rela­tionship of polymer melt by measuring ultrasonic velocities under various temperatures and pressures. The proposed technique was applied to on-line monitoring of injection molding process as an attempt to predict quality of molded parts. From the comparison based on Tait equation, it was confirmed that the PVT behav­ior of a polymer is well described by the variation of ultrasonic velocities measured within the polymer medium. In addition, the changes in part weight and moduli were successfully predicted by combining the data collected from ultrasonic technique and artificial neural network algorithm. The results found from this study suggest that the proposed technique can be effectively utilized to monitor the evolution of solid­ification within the mold by measuring ultrasonic responses of various polymers during injection molding process. Such data are expected to provide a critical basis for the accurate prediction of final performance of molded parts.

Development of the Adaptive PPF Controller for the Vibration Syppression of Smart Structures (지능구조물 제어를 위한 적응형 PPF 제어기의 개발)

  • Lee, Seung-Bum;Heo, Seok;Kwak, Moom Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.302-307
    • /
    • 2001
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller can be tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

  • PDF

An Adaptation Method in Noise Mismatch Conditions for DNN-based Speech Enhancement

  • Xu, Si-Ying;Niu, Tong;Qu, Dan;Long, Xing-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4930-4951
    • /
    • 2018
  • The deep learning based speech enhancement has shown considerable success. However, it still suffers performance degradation under mismatch conditions. In this paper, an adaptation method is proposed to improve the performance under noise mismatch conditions. Firstly, we advise a noise aware training by supplying identity vectors (i-vectors) as parallel input features to adapt deep neural network (DNN) acoustic models with the target noise. Secondly, given a small amount of adaptation data, the noise-dependent DNN is obtained by using $L_2$ regularization from a noise-independent DNN, and forcing the estimated masks to be close to the unadapted condition. Finally, experiments were carried out on different noise and SNR conditions, and the proposed method has achieved significantly 0.1%-9.6% benefits of STOI, and provided consistent improvement in PESQ and segSNR against the baseline systems.

Comparison of Different CNN Models in Tuberculosis Detecting

  • Liu, Jian;Huang, Yidi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3519-3533
    • /
    • 2020
  • Tuberculosis is a chronic and delayed infection which is easily experienced by young people. According to the statistics of the World Health Organization (WHO), there are nearly ten million fell ill with tuberculosis and a total of 1.5 million people died from tuberculosis in 2018 (including 251000 people with HIV). Tuberculosis is the largest single infectious pathogen that leads to death. In order to help doctors with tuberculosis diagnosis, we compare the tuberculosis classification abilities of six popular convolutional neural network (CNN) models in the same data set to find the best model. Before training, we optimize three parts of CNN to achieve better results. We employ sigmoid function to replace the step function as the activation function. What's more, we use binary cross entropy function as the cost function to replace traditional quadratic cost function. Finally, we choose stochastic gradient descent (SGD) as gradient descent algorithm. From the results of our experiments, we find that Densenet121 is most suitable for tuberculosis diagnosis and achieve a highest accuracy of 0.835. The optimization and expansion depend on the increase of data set and the improvements of Densenet121.

Milling tool wear forecast based on the partial least-squares regression analysis

  • Xu, Chuangwen;Chen, Hualing
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • Power signals resulting from spindle and feed motor, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the tool wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis method for this purpose. Firstly, the results of the application of widely used techniques are given and their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The singular value theory is used to noise reduction. According to grey relational degree analysis, sample variable is filtered as part sample variable and all sample variables as independent variables for modelling, and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is compare with actual value, in order to test whether the model of the tool wear can adopt to new measuring data on the independent variable. In the new different cutting process, milling tool wear was predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time. Experimental results show that the methods can meet the needs of the engineering and PLSR is more suitable for monitoring tool wear.

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC