• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.041 seconds

A piecewise affine approximation of sigmoid activation functions in multi-layered perceptrons and a comparison with a quantization scheme (다중계층 퍼셉트론 내 Sigmoid 활성함수의 구간 선형 근사와 양자화 근사와의 비교)

  • 윤병문;신요안
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.56-64
    • /
    • 1998
  • Multi-layered perceptrons that are a nonlinear neural network model, have been widely used for various applications mainly thanks to good function approximation capability for nonlinear fuctions. However, for digital hardware implementation of the multi-layere perceptrons, the quantization scheme using "look-up tables (LUTs)" is commonly employed to handle nonlinear signmoid activation functions in the neworks, and thus requires large amount of storage to prevent unacceptable quantization errors. This paper is concerned with a new effective methodology for digital hardware implementation of multi-layered perceptrons, and proposes a "piecewise affine approximation" method in which input domain is divided into (small number of) sub-intervals and nonlinear sigmoid function is linearly approximated within each sub-interval. Using the proposed method, we develop an expression and an error backpropagation type learning algorithm for a multi-layered perceptron, and compare the performance with the quantization method through Monte Carlo simulations on XOR problems. Simulation results show that, in terms of learning convergece, the proposed method with a small number of sub-intervals significantly outperforms the quantization method with a very large storage requirement. We expect from these results that the proposed method can be utilized in digital system implementation to significantly reduce the storage requirement, quantization error, and learning time of the quantization method.quantization method.

  • PDF

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Development of a sdms (Self-diagnostic monitoring system) with prognostics for a reciprocating pump system

  • Kim, Wooshik;Lim, Chanwoo;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1188-1200
    • /
    • 2020
  • In this paper, we consider a SDMS (Self-Diagnostic Monitoring System) for a reciprocating pump for the purpose of not only diagnosis but also prognosis. We have replaced a multi class estimator that selects only the most probable one with a multi label estimator such that we are able to see the state of each of the components. We have introduced a measure called certainty so that we are able to represent the symptom and its state. We have built a flow loop for a reciprocating pump system and presented some results. With these changes, we are not only able to detect both the dominant symptom as well as others but also to monitor how the degree of severity of each component changes. About the dominant ones, we found that the overall recognition rate of our algorithm is about 99.7% which is slightly better than that of the former SDMS. Also, we are able to see the trend and to make a base to find prognostics to estimate the remaining useful life. With this we hope that we have gone one step closer to the final goal of prognosis of SDMS.

Technology Adoption of InnovViz 2.0 : A Study of Mixed-Reality Visualization and Simulation System for Innovation Strategy with UTAUT Model

  • Savetpanuvong, Phannaphatr;Tanlamai, Uthai;Lursinsap, Chidchanok;Leelaphattarakij, Pairote;Kunarittipol, Wisit;Choochaisri, Supasate
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.3
    • /
    • pp.1-30
    • /
    • 2011
  • InnovVizwas designed and developed anew as avisualization and simulationtool to present innovation and strategy information. The InnovViz system employs two key types of technology, namely mixed reality (MR) and neural network (NN). An experiment was conducted to examine the usability, acceptance and possible adoption of this new system. Participants comprised 4 experts from 4 top performing entrepreneurial firms and 161 master degree students from 2 leading universities. The study used a modified UTAUT model and a cognition and perception model. The results revealed that when the InnovViz was introduced, the key drivers to adoption are Facilitating Conditions (FC) and Voluntary to Use (VOL). Adequate knowledge and sufficient resources were found to strongly affect FC construct. The expert's rating of a firm's innovation and performance was more congruent with senior students with a technology-background than with a finance and accounting-background. InnovViz was seen as providing complex information with an ease of use and usefulness for showing data and assessment. Among the three types of visuals depicted by InnovViz, experts rated their usefulness in descending order as follows: Cube, Tetrahedron and Saturn. Finally, experts found backward simulation to be slightly more useful for assessment than forward simulation.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Tracking Methods of User Position for Privacy Problems in Location Based Service (위치 기반 서비스에서 사생활 침해 문제 해결을 위한 사용자 위치 추적 방법)

  • Ra, Hyuk-Ju;Choi, Woo-Kyung;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.865-870
    • /
    • 2004
  • Development of new information and traffic technology causes fast-growing in the field of information-based system. At recent, development of LBS(Location Based Service) makes a remarkable growth of industry as GPS(Global Positioning System) becomes wide-spread and location information becomes more important. However, there is a problem like infringement of privacy when location information is used improperly[1]. In this paper, LBS platform is proposed in order to prevent infringement of privacy. To implement, we classify user path as pattern in a zone of user life. Thereupon, location information is provided according to user' specific situation.

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

CMAC Controller with Adaptive Critic Learning for Cart-Pole System (운반차-막대 시스템을 위한 적응비평학습에 의한 CMAC 제어계)

  • 권성규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.466-477
    • /
    • 2000
  • For developing a CMAC-based adaptive critic learning system to control the cart-pole system, various papers including neural network based learning control schemes as well as an adaptive critic learning algorithm with Adaptive Search Element are reviewed and the adaptive critic learning algorithm for the ASE is integrated into a CMAC controller. Also, quantization problems involved in integrating CMAC into ASE system are studied. By comparing the learning speed of the CMAC system with that of the ASE system and by considering the learning genemlization of the CMAC system with the adaptive critic learning, the applicability of the adaptive critic learning algorithm to CMAC is discussed.

  • PDF

A Machine Learning-based Customer Classification Model for Effective Online Free Sample Promotions (온라인 무료 샘플 판촉의 효과적 활용을 위한 기계학습 기반 고객분류예측 모형)

  • Won, Ha-Ram;Kim, Moo-Jeon;Ahn, Hyunchul
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.63-80
    • /
    • 2018
  • Purpose The purpose of this study is to build a machine learning-based customer classification model to promote customer expansion effect of the free sample promotion. Specifically, the proposed model classifies potential target customers who are expected to purchase the products included in the free sample promotion after receiving the free samples. Design/methodology/approach This study proposes to build a customer classification model for determining customers suitable for providing free samples by using various machine learning techniques such as logistic regression, multiple discriminant analysis, case-based reasoning, decision tree, artificial neural network, and support vector machine. To validate the usefulness of the proposed model, we apply it to a real-world free sample-based target marketing case of a Korean major cosmetic retail company. Findings Experimental results show that a machine learning-based customer classification model presents satisfactory accuracy ranging from 70% to 75%. In particular, support vector machine is found to be the most effective machine learning technique for free sample-based target marketing model. Our study sheds a light on customer relationship management strategies using free sample promotions.