• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.039 seconds

Application of support vector regression for the prediction of concrete strength

  • Lee, Jong-Jae;Kim, Doo-Kie;Chang, Seong-Kyu;Lee, Jang-Ho
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.299-316
    • /
    • 2007
  • The compressive strength of concrete is a commonly used criterion in producing concrete. However, the test on the compressive strength is complicated and time-consuming. More importantly, since the test is usually performed 28 days after the placement of the concrete at the construction site, it is too late to make improvements if unsatisfactory test results are incurred. Therefore, an accurate and practical strength estimation method that can be used before the placement of concrete is highly desirable. In this study, the estimation of the concrete strength is performed using support vector regression (SVR) based on the mix proportion data from two ready-mixed concrete companies. The estimation performance of the SVR is then compared with that of neural network (NN). The SVR method has been found to be very efficient in estimation accuracy as well as computation time, and very practical in terms of training rather than the explicit regression analyses and the NN techniques.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang;Luan, Hengjie;Zhang, Yuanchao;Sakaguchi, Osamu;Jiang, Yujing
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-95
    • /
    • 2020
  • Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

Lung Area Segmentation in Chest Radiograph Using Neural Network (신경회로망을 이용한 흉부 X-선 영상에서의 폐 영역분할)

  • Kim, Jong-Hyo;Park, Kwang-Suk;Min, Byoung-Goo;Im, Jung-Gi;Han, Man-Cheong;Lee, Choong-Woong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.33-37
    • /
    • 1990
  • In this paper, a new method for lung area segmentation in chest radiographs has been presented. The movivation of this study is to include fuzzy informations about the relation between the image date structure and the area to be segmented in the segmentation process efficiently. The proposed method approached the segmentation problem in the perspective of pattern classification, using trainable pattern classifier, multi-layer perceptron. Having been trained with 10 samples, this method gives acceptable segmentation results, and also demonstrated the desirable property of giving better results as the training continues with more training samples.

  • PDF

Development of a 32 Channel EEG and Evoked Potential Mapping System (32채널 뇌파 및 뇌유발전위 Mapping 시스템 개발)

  • Ahn, C.B.;Yoon, G.B.;Park, D.J.;Yoo, S.K.;Lee, S.H.;Ham, Y.J.;Kang, M.J.;Kim, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.86-89
    • /
    • 1995
  • A clinically oriented 32 channel Electroencephalogram (EEG) and evoked potential (EP) mapping system has been developed. The EEG and EP signals acquired from 32-channel electrodes are amplified by the pre-amplifier located near patient and are then tither amplified by main amplifier. An automatic artifact rejection scheme is employed using a neural network by which examination time is reduced substantially. Auditary and visual stimuli are used for the evoked potential mapping. A user-friendly graphical interface based on the Microsoft Window 3.1 is developed for the operation of the system. Statistical databases for the poop and individual comparisons are also included to support statistically based diagnosis.

  • PDF

Fingerprint Information Masking Algorithm By Using Multiple LBP Features (다중 LBP 피처를 이용한 지문 정보 마스킹 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.281-288
    • /
    • 2017
  • Financial service commission notified that fingerprint information of their documents should be deleted till 2019 to the financial industry and the public institution. Business solutions for fingerprint detection and masking in document images are introduced. In this paper, a fingerprint information masking algorithm is proposed by using the multiple LBP features to extract fingerprint's intrinsic characteristics for artificial neural network decision whether the candidate is a true fingerprint or not after segmentation of versatile fingerprint candidates from a document image. The experimental results of the proposed fingerprint masking algorithm for 3,497 document images that are saved in a financial industry show that 96.4% of fingerprint information is masked, hence this fingerprint masking algorithm can be used efficiently in real fingerprint masking tasks.

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

Super Resolution Fusion Scheme for General- and Face Dataset (범용 데이터 셋과 얼굴 데이터 셋에 대한 초해상도 융합 기법)

  • Mun, Jun Won;Kim, Jae Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1242-1250
    • /
    • 2019
  • Super resolution technique aims to convert a low-resolution image with coarse details to a corresponding high-resolution image with refined details. In the past decades, the performance is greatly improved due to progress of deep learning models. However, universal solution for various objects is a still challenging issue. We observe that learning super resolution with a general dataset has poor performance on faces. In this paper, we propose a super resolution fusion scheme that works well for both general- and face datasets to achieve more universal solution. In addition, object-specific feature extractor is employed for better reconstruction performance. In our experiments, we compare our fusion image and super-resolved images from one- of the state-of-the-art deep learning models trained with DIV2K and FFHQ datasets. Quantitative and qualitative evaluates show that our fusion scheme successfully works well for both datasets. We expect our fusion scheme to be effective on other objects with poor performance and this will lead to universal solutions.

Developing a Simulator of the Capture Process in Towed Fishing Gears by Chaotic Fish Behavior Model and Parallel Computing

  • Kim Yong-Hae;Ha Seok-Wun;Jun Yong-Kee
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • A fishing simulator for towed fishing gear was investigated in order to mimic the fish behavior in capture process and investigate fishing selectivity. A fish behavior model using a psycho-hydraulic wheel activated by stimuli is established to introduce Lorenz chaos equations and a neural network system and to generate the components of realistic fish capture processes. The fish positions within the specified gear geometry are calculated from normalized intensities of the stimuli of the fishing gear components or neighboring fish and then these are related to the sensitivities and the abilities of the fish. This study is applied to four different towed gears i.e. a bottom trawl, a midwater trawl, a two-boat seine, and an anchovy boat seine and for 17 fish species as mainly caught. The Alpha cluster computer system and Fortran MPI (Message-Passing Interface) parallel programming were used for rapid calculation and mass data processing in this chaotic behavior model. The results of the simulation can be represented as animation of fish movements in relation to fishing gear using Open-GL and C graphic programming and catch data as well as selectivity analysis. The results of this simulator mimicked closely the field studies of the same gears and can therefore be used in further study of fishing gear design, predicting selectivity and indoor training systems.