• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.04 seconds

Development of surface defect inspection algorithms for cold mill strip (냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyoung-Min;Park, Gwi-Tae;Park, Joong-Jo;Lee, Jong-Hak;Jung, Jin-Yang;Lee, Joo-Kang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment and co-occurrence matrix features are calculated. For the defect classification, multilayer neural network is used. The proposed algorithm showed 15% error rate.

  • PDF

Comparative Study of Knowledge Extraction on the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1338-1343
    • /
    • 2003
  • Data is the expression of the language or numerical values that show some characteristics. And information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns and make decisions. Today, knowledge extraction and application of the knowledge are broadly accomplished to improve the comprehension and to elevate the performance of systems in several industrial fields. The knowledge extraction could be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge can be drawn by rules. Clustering (CU, input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for expression the knowledge by rules. In this paper, the various approaches of the knowledge extraction are examined by categories that separate the methods by the applied industrial fields. Also, the several test data and the experimental results are compared and analysed based upon the applied techniques that include CL, ISP, NF, NN, EM, and so on.

  • PDF

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

Actor-Critic Reinforcement Learning System with Time-Varying Parameters

  • Obayashi, Masanao;Umesako, Kosuke;Oda, Tazusa;Kobayashi, Kunikazu;Kuremoto, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.138-141
    • /
    • 2003
  • Recently reinforcement learning has attracted attention of many researchers because of its simple and flexible learning ability for any environments. And so far many reinforcement learning methods have been proposed such as Q-learning, actor-critic, stochastic gradient ascent method and so on. The reinforcement learning system is able to adapt to changes of the environment because of the mutual action with it. However when the environment changes periodically, it is not able to adapt to its change well. In this paper we propose the reinforcement learning system that is able to adapt to periodical changes of the environment by introducing the time-varying parameters to be adjusted. It is shown that the proposed method works well through the simulation study of the maze problem with aisle that opens and closes periodically, although the conventional method with constant parameters to be adjusted does not works well in such environment.

  • PDF

Neuro-Fuzzy Controller Design for Level Controls

  • Intajag, S.;Tipsuwanporn, V.;Koetsam-ang, N.;Witheephanich, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.546-551
    • /
    • 2004
  • In this paper, a level controller is designed with the neuro-fuzzy model based on Takagi-Sugeno fuzzy system. The fuzzy system is employed as the controller, which can be tuned by the neural network mechanism based on a gradient descent technique. The tuning mechanism will provide an optimal process input by forcing the process error to zero. The proposed controller provides the online tunable mode to adjust the consequent membership function parameters. The controller is implemented with M-file and graphic user interface (GUI) of Matlab program. The program uses MPIBM3 interface card to connect with the industrial processes In the experimentation, the proposed method is tested to vary of the process parameters, set points and load disturbance. Processes of one tank and two tanks are used to evaluate the efficiency of our controller. The results of the both processes are compared with two PID systems that are 3G25A-PIDO1-E and E5AK of OMRON. From the comparison results, our controller performance can be archived in the case of more robustness than the two PID systems.

  • PDF

Design of Deep Learning-based Location information technology for Place image collecting

  • Jang, Jin-wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.31-36
    • /
    • 2020
  • This research study designed a location image collecting technology. It provides the exact location information of an image which is not given in the photo to the user. Deep learning technology analysis and collects the images. The purpose of this service system is to provide the exact place name, location and the various information of the place such as nearby recommended attractions when the user upload the image photo to the service system. Suggested system has a deep learning model that has a size of 25.3MB, and the model repeats the learning process 50 times with a total of 15,266 data, performing 93.75% of the final accuracy. This system can also be linked with various services potentially for further development.

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.

Fall Detection Based on Human Skeleton Keypoints Using GRU

  • Kang, Yoon-Kyu;Kang, Hee-Yong;Weon, Dal-Soo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.83-92
    • /
    • 2020
  • A recent study to determine the fall is focused on analyzing fall motions using a recurrent neural network (RNN), and uses a deep learning approach to get good results for detecting human poses in 2D from a mono color image. In this paper, we investigated the improved detection method to estimate the position of the head and shoulder key points and the acceleration of position change using the skeletal key points information extracted using PoseNet from the image obtained from the 2D RGB low-cost camera, and to increase the accuracy of the fall judgment. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion analysis method and on the velocity of human body skeleton key points change as well as the ratio change of body bounding box's width and height. The public data set was used to extract human skeletal features and to train deep learning, GRU, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than the conventional primitive skeletal data use method.

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

Prediction of Retention Time for PAH Molecule in HPLC (고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측)

  • Kim, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.102-108
    • /
    • 2000
  • Relative retention times (RRTs) of RAH molecules in HPLC are trained and predicted intesting sets using a multiple linear regression (NLR) and an artificial neural network (ANN). The maindescriptors in QSRR are molecular connectivity ($^1X_v,\;^2X_v$), the length-to-breadth ratios (L/B), and molecular dipole moment(D). L/B which is related with slot model is a good descripter in ANN, but isn't in MLR. Varainces which show the accuracy of prediction times in testing sets are 0.0099, 0.0114 for ANN and MLR, respectively. It was shown that ANN can exceed the MLR in prediction accuracy.

  • PDF