• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.034 seconds

Development of Dynamic Interface for Improvement of Diagnostic Algorithms in "G15 Condition Monitoring and Diagnosis System" (GIS 예방진단시스템의 진단알고리즘 향상을 위한 다이나믹 인터페이스 개발)

  • Min, Byoung-Woon;Lee, Byoung-Ho;Choi, Hang-Sub;Cho, Chul-Hee;Cho, Pil-Sung;Lee, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.57-58
    • /
    • 2006
  • 과거 2003년 북미 대 정전 이후 전력기기의 사고 발생 후 얼마나 빨리 사고를 제거하고 피해가 적도록 신속하게 복구하는 개념에서 사고이전에 사고를 미연에 방지하는 예방개념으로 관심이 높아지고 있다. 전력기기를 사고로부터 보호하는 보호기기도 중요하지만 사고이전의 상태를 감시하여 미연에 사고를 방지할 수 있도록 하는 예방진단시스템의 중요성도 높아지고 있다. 이렇듯 관심이 높아짐에 따라 각종 진단알고리즘의 개발이 신속히 이루어지고 있다. 보호기기처럼 어떤 설정된 정정 값 이상의 값이 입력되면 보호동작을 수행하는 단순 동작과는 달리 예방진단 시스템은 입력되는 신호의 패턴을 인식하여 열화/노화 등의 진행상황 및 정비조치에 대한 정보를 만들므로 인공지능적인 요소가 많이 적용되고 있다. 따라서 각종 Fuzzy, Neural Network, Expert 등 각종 판단 알고리즘과 패턴을 인식하는 확률통계, 프랙탈 기하학 등이 적용되고 있다. 모두가 틀리다는 것은 아니지만 보다 정확한 예방진단을 위해 각종 알고리즘이 추가 및 수정이 자주이루어지고 있는 실정이다. 그러나 새로운 알고리즘을 적용하기 위해서 기 개발되어 운영 중이거나 설치된 예방진단시스템을 멈추고 전반적으로 수정을 수행하는 것은 감시진단시스템의 본래 모습을 무시하는 행동이라고 할 수 있다. 본 연구에서는 이런 문제를 해결하기 위하여 온라인 상태에서 장비를 감시하는 예방진단 시스템의 알고리즘 변형 시 시스템의 운영이 문제되지 않도록하는 다이나믹 인터페이스를 개발하였다.

  • PDF

AptaCDSS - A Cardiovascular Disease Level Prediction and Clinical Decision Support System using Aptamer Biochip (AptaCDSS - 압타머칩을 이용한 심혈관질환 질환단계 예측 및 진단의사결정지원시스템)

  • Eom, Jae-Hong;Kim, Byoung-Hee;Lee, Je-Keun;Heo, Min-Oh;Park, Young-Jin;Kim, Min-Hyeok;Kim, Sung-Chun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.28-32
    • /
    • 2006
  • 최근 연구결과에 의하면 심장질환을 포함한 심혈관질환은 성별에 관계없이 미국 및 전 세계적으로 질병사망의 주요 원인으로 조사되었다. 본 연구에서는 보다 효율적으로 진단하기 위해 진단의사 결정 보조시스템에 대해서 다룬다. 개발된 시스템은 혈청 내의 특정 단백질의 상대적 양을 측정할 수 있는 바이오칩인 압타머칩을 이용해 생성한 환자들의 칩 데이터를 Support Vector Machine, Neural Network, Decision Tree, Bayesian Network 등의 총 4가지 기계학습 알고리즘으로 분석하여 질환단계를 예측하고 진단을 위한 보조정보를 제공한다. 논문에서는 총 135개 샘플로 구성된 3K 압타머칩 데이터에 대해 측정된 초기 시스템의 질환단계 분류성능을 제시하고 보다 유용한 진단의사결정 보조 시스템을 구성하기 위한 요소들에 대해서 논의한다.

  • PDF

Social Issue Analysis Based on Sentiment of Twitter Users (트위터 사용자들의 감성을 이용한 사회적 이슈 분석)

  • Kim, Hannah;Jeong, Young-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.81-91
    • /
    • 2019
  • Recently, social network service (SNS) is actively used by public. Among them, Twitter has a lot of tweets including sentiment and it is convenient to collect data through open Aplication Programming Interface (API). In this paper, we analyze social issues and suggest the possibility of using them in marketing through sentimental information of users. In this paper, we collect twitter text about social issues and classify as positive or negative by sentiment classifier to provide qualitative analysis. We provide a quantitative analysis by analyzing the correlation between the number of like and retweet of each tweet. As a result of the qualitative analysis, we suggest solutions to attract the interest of the public or consumers. As a result of the quantitative analysis, we conclude that the positive tweet should be brief to attract the users' attention on the Twitter. As future work, we will continue to analyze various social issues.

A Feature Set Selection Approach Based on Pearson Correlation Coefficient for Real Time Attack Detection (실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.59-66
    • /
    • 2018
  • The performance of a network intrusion detection system using the machine learning method depends heavily on the composition and the size of the feature set. The detection accuracy, such as the detection rate or the false positive rate, of the system relies on the feature composition. And the time it takes to train and detect depends on the size of the feature set. Therefore, in order to enable the system to detect intrusions in real-time, the feature set to beused should have a small size as well as an appropriate composition. In this paper, we show that the size of the feature set can be further reduced without decreasing the detection rate through using Pearson correlation coefficient between features along with the multi-objective genetic algorithm which was used to shorten the size of the feature set in previous work. For the evaluation of the proposed method, the experiments to classify 10 kinds of attacks and benign traffic are performed against NSL_KDD data set.

  • PDF

Deep Learning: High-quality Imaging through Multicore Fiber

  • Wu, Liqing;Zhao, Jun;Zhang, Minghai;Zhang, Yanzhu;Wang, Xiaoyan;Chen, Ziyang;Pu, Jixiong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

Changes in the Laterality of Functional Connectivity Associated with Tinnitus: Resting-State fMRI Study

  • Shin, Yeji;Ryu, Chang-Woo;Jahng, Geon-Ho;Park, Moon Suh;Byun, Jae Yong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Purpose: One of the suggested potential mechanisms of tinnitus is an alteration in perception in the neural auditory pathway. The aim of this study was to investigate the difference in laterality in functional connectivity between tinnitus patients and healthy controls using resting state functional MRI (rs-fMRI). Materials and Methods: Thirty-eight chronic tinnitus subjects and 45 age-matched healthy controls were enrolled in this study. Connectivity was investigated using independent component analysis, and the laterality index map was calculated based on auditory (AN) and dorsal attention (DAN), default mode (DMN), sensorimotor, salience (SalN), and visual networks (VNs). The laterality index (LI) of tinnitus subjects was compared with that of normal controls using region-of-interest (ROI) and voxel-based methods and a two-sample unpaired t-test. Pearson correlation was conducted to assess the associations between the LI in each network and clinical variables. Results: The AN and VN showed significant differences in LI between the two groups in ROI analysis (P < 0.05), and the tinnitus group had clusters with significantly decreased laterality of AN, SalN, and VN in voxel-based comparisons. The AN was positively correlated with tinnitus distress (tinnitus handicap inventory), and the SalN was negatively correlated with symptom duration (P < 0.05). Conclusion: The results of this study suggest that various functional networks related to psychological distress can be modified by tinnitus, and that this interrelation can present differently on the right and left sides, according to the dominance of the network.

SSD-based Fire Recognition and Notification System Linked with Power Line Communication (유도형 전력선 통신과 연동된 SSD 기반 화재인식 및 알림 시스템)

  • Yang, Seung-Ho;Sohn, Kyung-Rak;Jeong, Jae-Hwan;Kim, Hyun-Sik
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.777-784
    • /
    • 2019
  • A pre-fire awareness and automatic notification system are required because it is possible to minimize the damage if the fire situation is precisely detected after a fire occurs in a place where people are unusual or in a mountainous area. In this study, we developed a RaspberryPi-based fire recognition system using Faster-recurrent convolutional neural network (F-RCNN) and single shot multibox detector (SSD) and demonstrated a fire alarm system that works with power line communication. Image recognition was performed with a pie camera of RaspberryPi, and the detected fire image was transmitted to a monitoring PC through an inductive power line communication network. The frame rate per second (fps) for each learning model was 0.05 fps for Faster-RCNN and 1.4 fps for SSD. SSD was 28 times faster than F-RCNN.

Handwritten One-time Password Authentication System Based On Deep Learning (심층 학습 기반의 수기 일회성 암호 인증 시스템)

  • Li, Zhun;Lee, HyeYoung;Lee, Youngjun;Yoon, Sooji;Bae, Byeongil;Choi, Ho-Jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Inspired by the rapid development of deep learning and online biometrics-based authentication, we propose a handwritten one-time password authentication system which employs deep learning-based handwriting recognition and writer verification techniques. We design a convolutional neural network to recognize handwritten digits and a Siamese network to compute the similarity between the input handwriting and the genuine user's handwriting. We propose the first application of the second edition of NIST Special Database 19 for a writer verification task. Our system achieves 98.58% accuracy in the handwriting recognition task, and about 93% accuracy in the writer verification task based on four input images. We believe the proposed handwriting-based biometric technique has potential for use in a variety of online authentication services under the FIDO framework.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.