• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.038 seconds

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Development of a Soil Moisture Estimation Model Using Artificial Neural Networks and Classification and Regression Tree(CART) (의사결정나무 분류와 인공신경망을 이용한 토양수분 산정모형 개발)

  • Kim, Gwangseob;Park, Jung-A
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.155-163
    • /
    • 2011
  • In this study, a soil moisture estimation model was developed using a decision tree model, an artificial neural networks (ANN) model, remotely sensed data, and ground network data of daily precipitation, soil moisture and surface temperature. Soil moisture data of the Yongdam dam basin (5 sites) were used for model validation. Satellite remote sensing data and geographical data and meteorological data were used in the classification and regression tree (CART) model for data classification and the ANNs model was applied for clustered data to estimate soil moisture. Soil moisture data of Jucheon, Bugui, Sangjeon, Ahncheon sites were used for training and the correlation coefficient between soil moisture estimates and observations was between 0.92 to 0.96, root mean square error was between 1.00 to 1.88%, and mean absolute error was between 0.75 to 1.45%. Cheoncheon2 site was used for validation. Test statistics showed that the correlation coefficient, the root mean square error, the mean absolute error were 0.91, 3.19%, and 2.72% respectively. Results demonstrated that the developed soil moisture model using CART and ANN was able to apply for the estimation of soil moisture distribution.

Development a Downscaling Method of Remotely-Sensed Soil Moisture Data Using Neural Networks and Ancillary Data (신경망기법과 보조 자료를 사용한 원격측정 토양수분자료의 Downscaling기법 개발)

  • Kim, Gwang-Seob;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • The growth of water resources engineering associated with stable supply, management, development is essential to overcome the coming water deficit of our country. Large scale remote sensing and the analysis of sub-pixel variability of soil moisture fields are necessary in order to understand water cycle and to develop appropriate hydrologic model. The target resolution of coming Global monitoring of soil moisture field is about 10km which is not appropriate for the regional scale hydrologic model. Therefore, we need a downscaling scheme to generate hydrologic variables which are suitable for the regional hydrologic model. The results of the analysis of sub-pixel soil moisture variability show that the relationship between ancillary data and soil moisture fields shows there is very weak linear relationship. A downscaling scheme was developed using physically-based classification scheme and Neural Networks which are able to link the nonlinear relationship between ancillary data and soil moisture fields. The model is demonstrated by downscaling soil moisture fields from 4km to 0.2km resolution using remotely-sensed data from the Washita'92 experiment.

Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks (부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.236-242
    • /
    • 2015
  • We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

Development of the Hippocampal Learning Algorithm Using Associate Memory and Modulator of Neural Weight (연상기억과 뉴런 연결강도 모듈레이터를 이용한 해마 학습 알고리즘 개발)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.37-45
    • /
    • 2006
  • In this paper, we propose the development of MHLA(Modulatory Hippocampus Learning Algorithm) which remodel a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 3 steps system(DG, CA3, CAl) and improve speed of learning by addition of modulator to long-term memory learning. In hippocampal system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labelled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CAI region, convergence of connection weight which is used long-term memory is learned fast by neural networks which is applied modulator. To measure performance of MHLA, PCA(Principal Component Analysis) is applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by MHLA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.

Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups (추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정)

  • Kim, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.195-209
    • /
    • 2003
  • Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.

Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data (광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측)

  • Kim, Gwang-Seob;Cho, So-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.631-641
    • /
    • 2012
  • In this study, satellite data (MTSAT-1R), a numerical weather prediction model, RDAPS (Regional Data Assimilation and Prediction System) output, ground weather station data, and artificial neural networks were used to improve the accuracy of summer rainfall forecasts. The developed model was applied to the Seoul station to forecast the rainfall at 3, 6, 9, and 12-hour lead times. Also to reflect the different weather conditions during the summer season which is related to the frontal precipitation and the cyclonic precipitation such as Jangma and Typhoon, the neural network models were formed for two different periods of June-July and August-September respectively. The rainfall forecast model was trained during the summer season of 2006 and 2008 and was verified for that of 2009 based on the data availability. The results demonstrated that the model allows us to get the improved rainfall forecasts until lead time of 6 hour, but there is still a large room to improve the rainfall forecast skill.

Analysis and Recognition of Behavioral Response of Selected Insects in Toxic Chemicals for Water Quality Monitoring (수질 모니터링을 위한 유해 물질 유입에 따른 생물체의 행동 반응 분석 및 인식)

  • Kim, Cheol-Ki;Cha, Eui-Young
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.663-672
    • /
    • 2002
  • In this paper, Using an automatic tracking system, behavior of an aquatic insect, Chironomus sp. (Chironomidae), was observed in semi-natural conditions in response to sub-lethal treament of a carbamate insecticide, carbofuran. The fourth instar larvae were placed in an observation cage $(6cm\times{7cm}\times{2.5cm)}$ at temperature of $18^\circ{C}$ and the light condition of 10 time (light) : 14 time (dark). The tracking system was devised to detect the instant, partial movement of the insect body. Individual movement was traced after the treatment of carbofuran (0.1ppm) for four days 2days : before treatment, 2 days : after treatment). Along with the other irregular behaviors, "ventilation activity", appearing as a shape of "compressed zig-zag", was more frequently observed after the treatment of the insecticide. The activity of the test individuals was also generally depressed after the chemical treatment. In order to detect behavioral changes of the treated specimens, wavelet analysis was implemented to characterize different movement patterns. The extracted parameters based on Discrete Wavelet Transforms (DWT) were subsequently provided to artificial neural networks to be trained to represent different patterns of the movement tracks before and after treatments of the insecticide. This combined model of wavelets and artificial neural networks was able to point out the occurrence of characteristic movement patterns, and could be an alternative tool for automatically detecting presences of toxic chemicals for water quality monitoring. quality monitoring.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.