• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.038 seconds

Contrast Media Side Effects Prediction Study using Artificial Intelligence Technique (인공지능 기법을 이용한 조영제 부작용 예측 연구)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.423-431
    • /
    • 2023
  • The purpose of this study is to analyze the factors affecting the classification of the severity of contrast media side effects based on the patient's body information using artificial intelligence techniques to be used as basic data to reduce the degree of contrast medium side effects. The data used in this study were 606 examiners who had no contrast medium side effects in the past history survey among 1,235 cases of contrast medium side effects among 58,000 CT scans performed at a general hospital in Seoul. The total data is 606, of which 70% was used as a training set and the remaining 30% was used as a test set for validation. Age, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase) features were used as independent variables, and contrast media severity was used as a target variable. AUC(Area under curve), CA(Classification Accuracy), F1, Precision, and Recall were identified through AdaBoost, Tree, Neural network, SVM, and Random foest algorithm. AdaBoost and Random Forest show the highest evaluation index in the classification prediction algorithm. The largest factors in the predictions of all models were GFR, BMI, and GGT. It was found that the difference in the amount of contrast media injected according to renal filtration function and obesity, and the presence or absence of metabolic syndrome affected the severity of contrast medium side effects.

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF

Effects of Franchise Restaurant Selection Attributes on Perceived Value, Customer Satisfaction and Loyalty (프랜차이즈 레스토랑의 선택속성이 지각된 가치와 고객만족 및 고객충성도에 미치는 영향)

  • Wang, Shuo;Lee, Yong-Ki;Kim, Sung-Hwan
    • The Korean Journal of Franchise Management
    • /
    • v.9 no.4
    • /
    • pp.7-19
    • /
    • 2018
  • Purpose - Recently, global management in Korea franchise industry is becoming an important keyword. As an important branch market, Chinese market plays a major role not only by making experience of the competitiveness among global brands which offers a foothold to become a top global brand, but also by actualizing an economies of scale in production, sales, etc. Therefore, it is necessary to identify key successful factor influencing customer evaluation and responses of Korean franchise restaurant targeting Chinese consumers in China context. The purpose of this study is to examine the effects for Korean franchise restaurant selection attributes on perceived value, customer satisfaction and customer loyalty in Chinese context with SmartPLS 3 and Artifical Neural Network(ANN). Research design, data, and methodology - For these purposes, the authors developed several hypotheses. A questionnaire survey was conducted on the panel of online survey companies for Chinese consumers who have visited Korean franchise restaurants. A total of 404 data were analyzed using structural equation modeling(SEM) and artifical neural network(ANN) with SPSS 22.0 and SmartPLS 3.0. Result - The findings of this study are as follows: First, the alternative model findings show that facilities & atmosphere, employee service, and menu influenced on utilitarian value, customer satisfaction, and customer loyalty directly. Second, employee service influenced on customer satisfaction. Third, menu influenced on hedonic value. Fourth, brand reputation influenced on utilitarian value. Fifth, hedonic value increase customer satisfaction and customer loyalty. Sixth, hedonic value increase customer loyalty. Seventh, customer increase customer loyalty. And, the ANN analysis shows that utilitarian value is the first most important factor influencing customer satisfaction, followed by hedonic value, facilities & atmosphere, menu and employee service. However, the ANN analysis shows that customer satisfaction is the first most important factor influencing customer loyalty, followed by utilitarian value, hedonic value, brand reputation, menu, and employee service. Conclusions - This study provides practical implications for enhancing customer satisfaction and customer loyalty by applying the ANN technique that complements the limitations of the linear structural relationship analysis using the proposed model and the alternative model. In other words, the SEM-ANN model provides guidelines on how Korean franchise restaurants should formulate facilities & atmosphere, employee service, and menu mix strategies in China. In addition, ANN 's analysis shows that restaurant brand reputation plays a pivotal role in increasing customer loyalty. The fact suggests that Korean franchise companies should establish their domestic brand reputation prior to their entry into overseas markets such as China.

Drape Simulation Estimation for Non-Linear Stiffness Model (비선형 강성 모델을 위한 드레이프 시뮬레이션 결과 추정)

  • Eungjune Shim;Eunjung Ju;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2023
  • In the development of clothing design through virtual simulation, it is essential to minimize the differences between the virtual and the real world as much as possible. The most critical task to enhance the similarity between virtual and real garments is to find simulation parameters that can closely emulate the physical properties of the actual fabric in use. The simulation parameter optimization process requires manual tuning by experts, demanding high expertise and a significant amount of time. Especially, considerable time is consumed in repeatedly running simulations to check the results of applying the tuned simulation parameters. Recently, to tackle this issue, artificial neural network learning models have been proposed that swiftly estimate the results of drape test simulations, which are predominantly used for parameter tuning. In these earlier studies, relatively simple linear stiffness models were used, and instead of estimating the entirety of the drape mesh, they estimated only a portion of the mesh and interpolated the rest. However, there is still a scarcity of research on non-linear stiffness models, which are commonly used in actual garment design. In this paper, we propose a learning model for estimating the results of drape simulations for non-linear stiffness models. Our learning model estimates the full high-resolution mesh model of drape. To validate the performance of the proposed method, experiments were conducted using three different drape test methods, demonstrating high accuracy in estimation.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

Assessment of Applicability of CNN Algorithm for Interpretation of Thermal Images Acquired in Superficial Defect Inspection Zones (포장층 이상구간에서 획득한 열화상 이미지 해석을 위한 CNN 알고리즘의 적용성 평가)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon ;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.41-48
    • /
    • 2023
  • The presence of abnormalities in the subgrade of roads poses safety risks to users and results in significant maintenance costs. In this study, we aimed to experimentally evaluate the temperature distributions in abnormal areas of subgrade materials using infrared cameras and analyze the data with machine learning techniques. The experimental site was configured as a cubic shape measuring 50 cm in width, length, and depth, with abnormal areas designated for water and air. Concrete blocks covered the upper part of the site to simulate the pavement layer. Temperature distribution was monitored over 23 h, from 4 PM to 3 PM the following day, resulting in image data and numerical temperature values extracted from the middle of the abnormal area. The temperature difference between the maximum and minimum values measured 34.8℃ for water, 34.2℃ for air, and 28.6℃ for the original subgrade. To classify conditions in the measured images, we employed the image analysis method of a convolutional neural network (CNN), utilizing ResNet-101 and SqueezeNet networks. The classification accuracies of ResNet-101 for water, air, and the original subgrade were 70%, 50%, and 80%, respectively. SqueezeNet achieved classification accuracies of 60% for water, 30% for air, and 70% for the original subgrade. This study highlights the effectiveness of CNN algorithms in analyzing subgrade properties and predicting subsurface conditions.

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

Study on the Selection of Optimal Operation Position Using AI Techniques (인공지능 기법에 의한 최적 운항자세 선정에 관한 연구)

  • Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.681-687
    • /
    • 2023
  • The selection technique for optimal operation position selection technique is used to present the initial bow and stern draft with minimum resistance, for achievingthat is, the optimal fuel consumption efficiency at a given operating displacement and speed. The main purpose of this studypaper is to develop a program to select the optimal operating position with maximum energy efficiency under given operating conditions based on the effective power data of the target ship. This program was written as a Python-based GUI (Graphic User Interface) usingbased on artificial intelligence techniques sucho that ship owners could easily use the GUIit. In the process, tThe introduction of the target ship, the collection of effective power data through computational fluid dynamics (CFD), the learning method of the effective power model using deep learning, and the program for presenting the optimal operation position using the deep neural network (DNN) model were specifically explained. Ships are loaded and unloaded for each operation, which changes the cargo load and changes the displacement. The shipowners wants to know the optimal operating position with minimum resistance, that is, maximum energy efficiency, according to the given speed of each displacement. The developed GUI can be installed on the ship's tablet PC and application and used to determineselect the optimal operating position.

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.