• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.047 seconds

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Prediction of Dormant Customer in the Card Industry (카드산업에서 휴면 고객 예측)

  • DongKyu Lee;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In a customer-based industry, customer retention is the competitiveness of a company, and improving customer retention improves the competitiveness of the company. Therefore, accurate prediction and management of potential dormant customers is paramount to increasing the competitiveness of the enterprise. In particular, there are numerous competitors in the domestic card industry, and the government is introducing an automatic closing system for dormant card management. As a result of these social changes, the card industry must focus on better predicting and managing potential dormant cards, and better predicting dormant customers is emerging as an important challenge. In this study, the Recurrent Neural Network (RNN) methodology was used to predict potential dormant customers in the card industry, and in particular, Long-Short Term Memory (LSTM) was used to efficiently learn data for a long time. In addition, to redefine the variables needed to predict dormant customers in the card industry, Unified Theory of Technology (UTAUT), an integrated technology acceptance theory, was applied to redefine and group the variables used in the model. As a result, stable model accuracy and F-1 score were obtained, and Hit-Ratio proved that models using LSTM can produce stable results compared to other algorithms. It was also found that there was no moderating effect of demographic information that could occur in UTAUT, which was pointed out in previous studies. Therefore, among variable selection models using UTAUT, dormant customer prediction models using LSTM are proven to have non-biased stable results. This study revealed that there may be academic contributions to the prediction of dormant customers using LSTM algorithms that can learn well from previously untried time series data. In addition, it is a good example to show that it is possible to respond to customers who are preemptively dormant in terms of customer management because it is predicted at a time difference with the actual dormant capture, and it is expected to contribute greatly to the industry.

Comparison of Effective Soil Depth Classification Methods Using Topographic Information (지형정보를 이용한 유효토심 분류방법비교)

  • Byung-Soo Kim;Ju-Sung Choi;Ja-Kyung Lee;Na-Young Jung;Tae-Hyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • Research on the causes of landslides and prediction of vulnerable areas is being conducted globally. This study aims to predict the effective soil depth, a critical element in analyzing and forecasting landslide disasters, using topographic information. Topographic data from various institutions were collected and assigned as attribute information to a 100 m × 100 m grid, which was then reduced through data grading. The study predicted effective soil depth for two cases: three depths (shallow, normal, deep) and five depths (very shallow, shallow, normal, deep, very deep). Three classification models, including K-Nearest Neighbor, Random Forest, and Deep Artificial Neural Network, were used, and their performance was evaluated by calculating accuracy, precision, recall, and F1-score. Results showed that the performance was in the high 50% to early 70% range, with the accuracy of the three classification criteria being about 5% higher than the five criteria. Although the grading criteria and classification model's performance presented in this study are still insufficient, the application of the classification model is possible in predicting the effective soil depth. This study suggests the possibility of predicting more reliable values than the current effective soil depth, which assumes a large area uniformly.

A Study on the Settlement Prediction of Soft Ground Embankment Using Artificial Neural Network (인공신경망을 이용한 연약지반성토의 침하예측 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.17-25
    • /
    • 2007
  • Various geotechnical problems due to insufficient bearing capacity or excessive settlement are likely to occur when constructing roads or large complexes on soft ground. Accurate predictions of the magnitude of settlement and the consolidation time provide numerous options of ground improvement methods and, thus, enable to save time and expense of the whole project. Asaoka's method is probably the most frequently used one for settlement prediction and the empirical formulae such as Hyperbolic method and Hoshino's method are also often used. To find an elaborate method of predicting the embankment settlement, two recurrent type neural network models, such as Jordan model and Elman-Jordan model, are adopted. The data sets of settlement measured at several domestic sites are analyzed to obtain the most suitable model structures. It was shown from the comparison between predicted and measured settlements that Jordan model provides better predictions than Elman-Jordan model does and that the predictions using CPT results are more accurate than those using SPT results. It is believed that RNN using cone penetration test results can be a highly efficient tool in predicting settlements if enough field data can be obtained.

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.