This study predicts the average scores of top 150 PGA golf players on 132 PGA Tour tournaments (2013-2015) using data mining techniques and statistical analysis. This study also aims to predict the Top 10 and Top 25 best players in 4 different playoffs. Linear and nonlinear regression methods were used to predict average scores. Stepwise regression, all best subset, LASSO, ridge regression and principal component regression were used for the linear regression method. Tree, bagging, gradient boosting, neural network, random forests and KNN were used for nonlinear regression method. We found that the average score increases as fairway firmness or green height or average maximum wind speed increases. We also found that the average score decreases as the number of one-putts or scrambling variable or longest driving distance increases. All 11 different models have low prediction error when predicting the average scores of PGA Tournaments in 2015 which is not included in the training set. However, the performances of Bagging and Random Forest models are the best among all models and these two models have the highest prediction accuracy when predicting the Top 10 and Top 25 best players in 4 different playoffs.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.13
no.4
/
pp.1-11
/
2014
Traffic congestion cost is more likely to occur in the inner city than interregional road, and it accounts for about 63.39% of the whole. Therefore, it is important to mitigate traffic congestion of the inner city. Traffic congestion in the urban could be divided into Recurrent congestion and Non-recurrent congestion. Quick and accurate detection of Non-recurrent congestion is also important in order to relieve traffic congestion. The existing studies about incident detection have been variously conducted, however it was limited to Uninterrupted Traffic Flow Facilities such as freeway. Moreover study of incident detection on the interrupted Traffic Flow Facilities is still inadequate due to complex geometric structure such as traffic signals and intersections. Therefore, in this study, incident detection model was constructed using by Artificial Neural Network to aim at urban arterial road that is interrupted traffic flow facility. In the result of the reliability assessment, the detection rate were 46.15% and false alarm rate were 25.00%. These results have a meaning as a result of the initial study aimed at interrupted traffic flow. Furthermore, it demonstrates the possibility that Non-recurrent congestion can be detected by using car navigation data such as car navigator system device.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.12
/
pp.2349-2356
/
2008
In this paper, we present the method to effectively extract and classify the EEG caused by only brain activity when a normal subject is in a state of mental activity. We measure the synchronous EEG on the auditory event when a subject who is in a normal state thinks of a specific task, and then shift the baseline and reduce the effect of biological artifacts on the measured EEG. Finally we extract only the mental task signal by averaging method, and then perform the recognition of the extracted mental task signal by computing the AR coefficients. In the experiment, the auditory stimulus is used as an event and the EEG was recorded from the three channel $C_3-A_1$, $C_4-A_2$ and $P_Z-A_1$. After averaging 16 times for each channel output, we extracted the features of specific mental tasks by modeling the output as 12th order AR coefficients. We used total 36th order coefficient as an input parameter of the neural network and measured the training data 50 times per each task. With data not used for training, the rate of task recognition is 34-92 percent on the two tasks, and 38-54 percent on the four tasks.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.11
/
pp.2105-2110
/
2008
Embedding the compact wearable units to monitor the health status of a person has been analysed as a convenient solution for the home health care. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring of the elderly and people with limited mobility can not only provide their general health status but also alarms whenever an emergency such as fall or gait has been occurred and a help is needed. A timely assistance in such a situation can reduce the loss of life. This work shows a detailed analysis of the data received from a chest worn sensor unit embedding a 3-axis accelerometer and depicts which features are important for the classification of human activities. How to arrange and reduce the features to a new feature set so that it can be classified using a simple classifier and also improving the classification resolution. Principal component analysis (PCA) has been used for modifying the feature set and afterwards for reducing the size of the same. Finally a Neural network classifier has been used to analyse the classification accuracies. The accuracy for detection of fall events was found to be 86%. The overall accuracy for the classification of Activities or daily living (ADL) and fall was around 94%.
Ocean remote sensing reflectance of just above water level was modeled using inherent optical properties of seawater contents, total absorption (a) and backscattering(bb) coefficients ($R_{rs}$=0.046 $b_b$/(a+$b_b$). This modeling was based on the specific absorption and backscattering coefficients of 5 optically active seawater components; phytoplankton pigments, non-chlorophyllous suspended particles, dissolved organic matters, heterotrophic microorganisms, and the other unknown particle components. Simulated remote sensing reflectance($R_{rs}$) and water leaving radiance(Lw) spectra were well agreed with in-situ measurements obtained using a bi-directional fields remote spectrometer in coastal waters and open ocean. $R_{rs}$ values in SeaWiFS bands from the model were analyzed to develop 2-band ratio ocean color chlorophyll with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The model algorithms were examined and compared with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The remote reflectance model will be very helpful to understand the variation of water leaving radiances caused by the various components in the seawater, and to develop new ocean color algorithm for CASE-II water using neural network method or other analytical method, and in the model of fine atmospheric signal correction.
The purpose of this paper is to show the clustering trend and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the self organizing maps based on neural network(SOM) and Tier models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using SOM show that 3 Korean ports[Busan(26.5%), Incheon(13.05%), and Gwangyang(22.95%) each]can increase the efficiency. Second, according to Tier model, Busan(Hongkong, Sanghai, Manila, and Singapore), Incheon(Aden, Ningbo, Dabao, and Bangkog), and Gwangyang(Aden, Ningbo, Bangkog, Hipa, Dubai, and Guangzhou) should be clustered with those ports in parentheses. Third, when both SOM and Tier models are mixed, (1) efficiency improvement of Busan Port is greater than those of Incheon and Gwangyang ports. (2) Incheon port has shown the slow improvement during 2001-2007, but after 2008, improvement speed was high. (3) improvement level of Gwangyang port was high during 2001-2003, but after 2004, improvement level was constantly decreased. The policy implication of this paper is that Korean port policy planner should introduce the SOM, and Tier models with the mixed two models when clustering among the Asian ports for enhancing the efficiency of inputs and outputs.
A software system is required to change during its life cycle due to various requirements such as adding functionalities, fixing bugs, and adjusting to new computing environments. Such program code modification should be considered as carefully as a new system development becase unexpected software errors could be introduced. In addition, when reusing open source programs, we can expect higher quality software if code changes of the open source program are predicted in advance. This paper proposes a Convolutional Neural Network (CNN)-based deep learning model to predict source code changes. In this paper, the prediction of code changes is considered as a kind of a binary classification problem in deep learning and labeled datasets are used for supervised learning. Java projects and code change logs are collected from GitHub for training and testing datasets. Software metrics are computed from the collected Java source code and they are used as input data for the proposed model to detect code changes. The performance of the proposed model has been measured by using evaluation metrics such as precision, recall, F1-score, and accuracy. The experimental results show the proposed CNN model has achieved 95% in terms of F1-Score and outperformed the multilayer percept-based DNN model whose F1-Score is 92%.
Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
Journal of the Korea Convergence Society
/
v.12
no.10
/
pp.63-70
/
2021
Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.
The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.
Kim, Ga Young;Jeong, Su Hwan;Eom, Soo Hyeon;Jang, Seong Won;Lee, So Yeon;Choi, Sangil
KIPS Transactions on Computer and Communication Systems
/
v.10
no.9
/
pp.251-260
/
2021
Gait analysis is one of the research fields for obtaining various information related to gait by analyzing human ambulation. It has been studied for a long time not only in the medical field but also in various academic areas such as mechanical engineering, electronic engineering, and computer engineering. Efforts have been made to determine whether there is a problem with gait through gait analysis. In this paper, as a pre-step to find out gait abnormalities, it is investigated whether it is possible to differentiate whether experiment participants wear elderly simulation suit or not by applying gait data to machine learning models for the same person. For a total of 45 participants, each gait data was collected before and after wearing the simulation suit, and a total of six machine learning models were used to learn the collected data. As a result of using an artificial neural network model to distinguish whether or not the participants wear the suit, it showed 99% accuracy. What this study suggests is that we explored the possibility of judging the presence or absence of abnormality in gait by using machine learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.