• Title/Summary/Keyword: neural network techniques

Search Result 1,056, Processing Time 0.023 seconds

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Method for determining flood risk in construction sites using artificial neural network techniques (인공 신경망 기법을 활용한 건설 현장 침수 위험 판정 방법)

  • Im Jang Hyuk;Cho Hye Rin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.344-344
    • /
    • 2023
  • 최근 기후변화에 따라 극한 강우로 전 세계적으로 국지적 홍수 피해가 증가하고 있다. 또한 극한 강우 발생시 다양한 건설 현장의 상황에 따라 침수 취약성이 나타나 인적 물적 피해로 이어질 수 있다. 특히, 시공에 따른 현장 지형 변화에 대해 실시간으로 침수 예측이 불가하여 위험 판단이 어려운 실정이며, 극한 강우 발생에 대비하기 위해 강우 정보 획득 및 분석을 효율화하여 강우예측 정확성을 높일 필요가 있다. 이러한 필요성에 따라 본 연구에서는 건설 현장의 침수 피해를 최소화하기 위해 침수 위험을 판정하고 예측하는 방법을 제시하고자 한다. 본 연구의 침수 위험 판정 방법은 건설 현장에서 실시간 지형변화 정보 확보와 침수 위험 판정의 정확도를 높이기 위한 침수심 분석에 인공 신경망 기법을 활용하였다. 또한, 침수판정 알고리즘은 지형, 강우 분석 모듈과 침수판정 모듈로 구성하였다. 지형 분석 모듈은 건설 현장이 시공진행에 따른 지형 데이터의 변화를 고려하기 위해 실시간 영상 정보의 객체 탐지를 구분하는 인공 신경망 기법을 적용해 지형 분석 모듈을 구축하였다. 강우 분석 모듈은 다양한 강우 정보를 취합할 수 있는 서버를 구축하여 강우 임베딩 정보를 실시간으로 분석하도록 고안하여 정확도를 높였다. 이러한 자료를 바탕으로 강우-유출해석에 의한 침수심 값과 실측값, 침수 지표를 활용하여 인공 신경망 기법으로 침수 위험을 판정하도록 제시하였다. 본 연구를 통해 건설 현장에서 지형 상태의 지속적인 변화와 강우데이터의 정확도 향상에 대응할 수 있는 침수 위험 판정이 가능하고 인적 물적 피해 최소화를 기대할 수 있다. 향후, 본 연구에서 제시된 방법은 건설 현장에서 분석 시스템과 실측 모니터링에 의해 검증되어야 할 것이며, 건설 현장 외에도 스마트 도시 및 지하 공간에서 확대하여 적용할 수 있을 것으로 판단된다.

  • PDF

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

Improving Adversarial Robustness via Attention (Attention 기법에 기반한 적대적 공격의 강건성 향상 연구)

  • Jaeuk Kim;Myung Gyo Oh;Leo Hyun Park;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.621-631
    • /
    • 2023
  • Adversarial training improves the robustness of deep neural networks for adversarial examples. However, the previous adversarial training method focuses only on the adversarial loss function, ignoring that even a small perturbation of the input layer causes a significant change in the hidden layer features. Consequently, the accuracy of a defended model is reduced for various untrained situations such as clean samples or other attack techniques. Therefore, an architectural perspective is necessary to improve feature representation power to solve this problem. In this paper, we apply an attention module that generates an attention map of an input image to a general model and performs PGD adversarial training upon the augmented model. In our experiments on the CIFAR-10 dataset, the attention augmented model showed higher accuracy than the general model regardless of the network structure. In particular, the robust accuracy of our approach was consistently higher for various attacks such as PGD, FGSM, and BIM and more powerful adversaries. By visualizing the attention map, we further confirmed that the attention module extracts features of the correct class even for adversarial examples.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

Study on the Application of Big Data Mining to Activate Physical Distribution Cooperation : Focusing AHP Technique (물류공동화 활성화를 위한 빅데이터 마이닝 적용 연구 : AHP 기법을 중심으로)

  • Young-Hyun Pak;Jae-Ho Lee;Kyeong-Woo Kim
    • Korea Trade Review
    • /
    • v.46 no.5
    • /
    • pp.65-81
    • /
    • 2021
  • The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.