• 제목/요약/키워드: neural network techniques

검색결과 1,056건 처리시간 0.024초

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

Applications of artificial intelligence and data mining techniques in soil modeling

  • Javadi, A.A.;Rezania, M.
    • Geomechanics and Engineering
    • /
    • 제1권1호
    • /
    • pp.53-74
    • /
    • 2009
  • In recent years, several computer-aided pattern recognition and data mining techniques have been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks are the most widely used pattern recognition methods that have been utilized to model soil behavior. Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical engineering with particular reference to constitutive modeling of soils. It covers applications of artificial neural network, genetic programming and evolutionary programming approaches for soil modeling. It is suggested that these systems could be developed as efficient tools for modeling of soils and analysis of geotechnical engineering problems, especially for cases where the behavior is too complex and conventional models are unable to effectively describe various aspects of the behavior. It is also recognized that these techniques are complementary to conventional soil models rather than a substitute to them.

입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계 (Design of maneuvering target tracking system using neural network as an input estimator)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

5G 및 B5G 네트워크에서 그래프 신경망 및 강화학습 기반 최적의 VNE 기법 (Graph Neural Network and Reinforcement Learning based Optimal VNE Method in 5G and B5G Networks)

  • 박석우;문강현;정경택;나인호
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.113-124
    • /
    • 2023
  • 5G 및 B5G(Beyond 5G) 네트워크의 등장으로 기존 네트워크 한계를 극복할 수 있는 네트워크 가상화 기술이 주목받고 있다. 네트워크 가상화의 목적은 효율적 네트워크 자원의 활용과 다양한 전송요구 서비스에 대한 솔루션을 제공하기 위함이다. 이와 관련하여 여러 가지 휴리스틱 기반의 VNE 기법이 연구되고 있으나 네트워크 자원할당 및 서비스의 유연성이 제한되는 문제점을 지니고 있다. 본 논문에서는 다양한 응용의 서비스 요구사항을 충족하기 위해 GNN 기반의 네트워크 슬라이싱 분류 기법과 최적의 자원할당을 위한 RL 기반 VNE 기법을 제안한다. 제안된 기법에서는 Actor-Critic 네트워크를 이용하여 최적의 VNE를 수행한다. 또한 성능 평가를 위해 제안된 기법과 기존의 Node Rank, MCST-VNE, GCN-VNE 기법과의 성능을 비교분석하고 서비스 수용률 제고 및 효율적 자원 할당 측면에서 성능이 향상됨을 보인다.

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구 (A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller)

  • 정형환;김상효;주석민;이정필;이동철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

비선형성이 존재하는 동적 시스템의 식별과 제어 (Identification and control of dynamical system including nonlinearities)

  • 김규남;조규상;양태진;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.236-242
    • /
    • 1992
  • Multi-layered neural networks are applied to the identification and control of nonlinear dynamical system. Traditional adaptive control techniques can only deal with linear systems or some special nonlinear systems. A scheme for combining multi-layered neural networks with model reference network techniques has the capability to learn the nonlinearity and shows the great potential for adaptive control. In many interesting cases the system can be described by a nonlinear model in which the control input appears linearly. In this paper the identification of linear and nonlinear part are performed simultaneously. The projection algorithm and the new estimation method which uses the delta rule of neural network are compared throughout the simulation. The simulation results show that the identification and adaptive control schemes suggested are practically feasible and effective.

  • PDF

인공신경망을 이용한 산사태 취약성 분석 (Landslide Susceptibility Analysis Using Artificial Neural Networks)

  • 이사로;류주형;민경덕;원중선
    • 자원환경지질
    • /
    • 제33권4호
    • /
    • pp.333-340
    • /
    • 2000
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and apply the newly developed techniques for assessment of landslide susceptibility to study areas, Yongin. Landslide locations detected from interpretation of aerial photo and field survey, and topographic, soil and geological maps of the Yongin area were collected. The data of the locations of land-slide, slope, soil texture, topography and lithology were constructed into spatial database using GIS. Using the factors, landslide susceptibility was analyzed by artificial neural network methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and landslide location data.

  • PDF

스테레오 화상데이타의 정합기법 이용한 주행장애물의 인식 (Recognition of Obstacles under Dring Vehicles using Stereo Image matching Techniques)

  • 김종만;김원섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.508-509
    • /
    • 2007
  • For the safty driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates.

  • PDF

다중 인공신경망 기반의 실내 위치 추정 기법 (Indoor Localization based on Multiple Neural Networks)

  • 손인수
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.