• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.028 seconds

Neural Network-based Decision Class Analysis with Incomplete Information

  • Kim, Jae-Kyeong;Lee, Jae-Kwang;Park, Kyung-Sam
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.281-287
    • /
    • 1999
  • Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific knowledge) and output data (a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-specific knowledge of decision problem exactly. This paper presents a methodology fur sensitivity analysis of DCA under incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated with a raw material purchasing problem.

  • PDF

Neural Network-based Decision Class Analysis with Incomplete Information

  • 김재경;이재광;박경삼
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.281-287
    • /
    • 1999
  • Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific knowledge) and output data(a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-specific knowledge of decision problem exactly. This paper presents a methodology for sensitivity analysis of DCA under incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated with a raw material purchasing problem.

  • PDF

CNN-based Gesture Recognition using Motion History Image

  • Koh, Youjin;Kim, Taewon;Hong, Min;Choi, Yoo-Joo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Relative Error Compensation of Robot Using Neural Network (신경 회로망을 이용한 로봇의 상대 오차 보상)

  • Kim, Yeon-Hoon;Jeong, Jae-Won;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.66-72
    • /
    • 1999
  • Robot calibration is very important to improve the accuracy of robot manipulators. However, the calibration procedure is very time consuming and laborious work for users. In this paper, we propose a method of relative error compensation to make the calibration procedure easier. The method is completed by a Pi-Sigma network architecture which has sufficient capability to approximate the relative relationship between the accuracy compensations and robot configurations while maintaining an efficient network learning ability. By experiment of 4-DOF SCARA robot, KIRO-3, it is shown that both the error of joint angles and the positioning error of end effector are drop to 15$\%$. These results are similar to those of other calibration methods, but the number of measurement is remarkably decreased by the suggested compensation method.

  • PDF

Breast Cancer Images Classification using Convolution Neural Network

  • Mohammed Yahya Alzahrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.113-120
    • /
    • 2023
  • One of the most prevalent disease among women that leads to death is breast cancer. It can be diagnosed by classifying tumors. There are two different types of tumors i.e: malignant and benign tumors. Physicians need a reliable diagnosis procedure to distinguish between these tumors. However, generally it is very difficult to distinguish tumors even by the experts. Thus, automation of diagnostic system is needed for diagnosing tumors. This paper attempts to improve the accuracy of breast cancer detection by utilizing deep learning convolutional neural network (CNN). Experiments are conducted using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Compared to existing techniques, the used of CNN shows a better result and achieves 99.66%% in term of accuracy.

An Optimal Design Procedure for Brain-state-in-a-box Neural Network (BSB 신경망을 위한 최적 설계방안)

  • 임영희;박대희;박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • This paper presents an optimal design procedure to realize an BSB neural networks by means of the parametrization of solution space and optimization of parameters using evaluation program. In particular, the performance index based on DOA analysis may make an associative memory implementation reach on the level of practical success.

  • PDF

Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy

  • Kim, Gyu Hyun;Lee, Sang-Hoon;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.100-104
    • /
    • 2016
  • Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.

Application of artificial neural network for determination of wind induced pressures on gable roof

  • Kwatra, Naveen;Godbole, P.N.;Krishna, Prem
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • Artificial Neural Networks (ANN) have the capability to develop functional relationships between input-output patterns obtained from any source. Thus ANN can be conveniently used to develop a generalised relationship from limited and sometimes inconsistent data, and can therefore also be applied to tackle the data obtained from wind tunnel tests on building models with large number of variables. In this paper ANN model has been developed for predicting wind induced pressures in various zones of a Gable Building from limited test data. The procedure is also extended to a case wherein interference effects on a gable roof building by a similar building are studied. It is found that the Artificial Neural Network modelling is seen to predict successfully, the pressure coefficients for any roof slope that has not been covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the wind tunnel testing effort for interference studies to almost half.

A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule (신경망 회로를 이용한 필기체 숫자 인식에 관할 연구)

  • Lee, Kye-Han;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF