• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.028 seconds

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.

An Efficient and Accurate Artificial Neural Network through Induced Learning Retardation and Pruning Training Methods Sequence

  • Bandibas, Joel;Kohyama, Kazunori;Wakita, Koji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.429-431
    • /
    • 2003
  • The induced learning retardation method involves the temporary inhibition of the artificial neural network’s active units from participating in the error reduction process during training. This stimulates the less active units to contribute significantly to reduce the network error. However, some less active units are not sensitive to stimulation making them almost useless. The network can then be pruned by removing the less active units to make it smaller and more efficient. This study focuses on making the network more efficient and accurate by developing the induced learning retardation and pruning sequence training method. The developed procedure results to faster learning and more accurate artificial neural network for satellite image classification.

  • PDF

Alternative optimization procedure for parameter design using neural network without SN (파라미터 설계에서 신호대 잡음비 사용 없이 신경망을 이용한 최적화 대체방안)

  • Na, Myung-Whan;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • Taguchi has used the signal-to-noise ratio (SN) to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. Many Statisticians criticize the Taguchi techniques of analysis, particularly those based on the SN. Moreover, there are difficulties in practical application, such as complexity and nonlinear relationships among quality characteristics and design (control) factors, and interactions occurred among control factors. Neural networks have a learning capability and model free characteristics. There characteristics support neural networks as a competitive tool in processing multivariable input-output implementation. In this paper we propose a substantially simpler optimization procedure for parameter design using neural network without resorting to SN. An example is illustrated to compare the difference between the Taguchi method and neural network method.

Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design (Network 분석과 신경망을 이용한 Cellular 생산시스템 설계)

  • Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Numerical Prediction of Temperature-Dependent Flow Stress on Fiber Metal Laminate using Artificial Neural Network (인공신경망을 사용한 섬유금속적층판의 온도에 따른 유동응력에 대한 수치해석적 예측)

  • Park, E.T.;Lee, Y.H.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.227-235
    • /
    • 2018
  • The flow stresses have been identified prior to a numerical simulation for predicting a deformation of materials using the experimental or analytical analysis. Recently, the flow stress models considering the temperature effect have been developed to reduce the number of experiments. Artificial neural network can provide a simple procedure for solving a problem from the analytical models. The objective of this paper is the prediction of flow stress on the fiber metal laminate using the artificial neural network. First, the training data were obtained by conducting the uniaxial tensile tests at the various temperature conditions. After, the artificial neural network has been trained by Levenberg-Marquardt method. The numerical results of the trained model were compared with the analytical models predicted at the previous study. It is noted that the artificial neural network can predict flow stress effectively as compared with the previously-proposed analytical models.

A Study on The Estimation of Partial Discharge Location Using Division of Internal Structure of Transformer and Neural Network (변압기의 내부 구조 격자화와 신경망을 이용한 부분방전 위치추정 연구)

  • Lee, Yang-Jin;Kim, Jae-Chul;Kim, Young-Sung;Cho, Sung-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.370-375
    • /
    • 2006
  • This paper suggests the method for estimating a partial discharge (PD) location using divide of the inside transformer as a grid. The PD location is found swiftly and economically compared with the typical method detecting a PD. The reason is that the location of PD is detected in the section. The estimation of PD location is trained using the Neural Network. JavaNNS(Java Neural Network Simulator) and SNNS(Stuttgart Neural Network Simulator) are used for searching the location of PD. The simulation procedure is following, The transformer is assumed that the case is a regular hexahedron. The sensor is installed in a proper location. A section of PD location is set as a target, and training set is studied with several PD locations in the inside of the transformer. As a result of training process, the learning capability of neural network is excellent. The PD location is detected by division of internal structure of transformer and application of neural network.

  • PDF