• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.029 seconds

Intelligent Control of Multivariable Process Using Immune Network System

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2126-2128
    • /
    • 2001
  • This paper suggests that the immune network algorithm based on fuzzy set can effectively be used in tuning of a PID controller for multivariable process or nonlinear process. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that from a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. Along with these, this paper used the fuzzy set in order that the stimulation and suppression relationship between antibody and antigen can be more adaptable controlled against the external condition, including noise or disturbance of plant. The immune network based on fuzzy set suggested here is applied for the PID controller tuning of multivariable process with two inputs and one output and is simulated.

  • PDF

Learning of the Recurrent Neural Networks with Addition Feedback Connections and Application to the Recognition of Korean Spoken Digits (附加的인 Feedback 연결을 가진 循環神經回路網의 學習과 韓國語 숫자음 認識에의 應用)

  • Ryeu, Jin-Kyung;Chung, Ho-Sun
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.163-169
    • /
    • 1994
  • We propose a new learning method of recurrent neural networks as an effort to solve local minima problem. In this method the network with fixed connection weights is run for a given period time under given time-variant external inputs and initial conditions. The weights are changed in the direction that the total error is maximally decreased by using the steepest gradient method. If the obtained error is not sufficiently small even after iterating this procedure, additional feedback connections are introduced. Then, the external input signal is redefined. And we execute experiments on the recognition of Korean spoken digits as an application of the proposed network.

  • PDF

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Study on the Weight Optimization of Excavator Attachments Considering Durability (굴삭기 작업장치 내구 경량 최적화 기법 연구)

  • Kim, Pan-Young;Kim, Hyun-Gi;Park, Jin-Soo;Hwang, Jae-Bong;Song, Kyu-Sam
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.349-353
    • /
    • 2007
  • The main functions of excavator are mainly carried out by excavator attachments such as arm and boom. These components should be designed to be light as well as durable enough because their effects on the whole structure are significant. In this paper, an optimization procedure for lightweight design considering fatigue strength for excavator attachments is presented. The weight of attachments and allowable fatigue stresses at critical areas are used as objective function and constraints, respectively, in which design variables are the thickness of the plates of attachments. The simulated annealing search method is adopted for a global optimization solution. Besides, the response surface method using the artificial neural network is used to simulate constraint function for the sake of practical fast calculation. Some example case of optimization is presented here for a sample excavator. This weight optimization is expected to contribute to a considerable improvement of fuel efficiency of excavator.

  • PDF

Development of Diagnostic Expert Systems for A Rotor System (로터시스템의 이상진단시스템에 대한 연구)

  • Kim, Sung-Chul;Kim, Sang-Pyo;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2001
  • A rotor system is composed of a rotating shaft with supporting bearings. The rotor system is widely used in every rotating machinery such as the turbine generator and the high precision machine tools. A negligible error or malfunction in the rotor, however, can cause a catastrophic failure in the system then result in the environmental and economic disasters. A diagnosis of the rotor system is important in preventing these kinds of failures and disasters. Up to now, many researchers have devoted in the development of diagnosing tools for the system. The basic principles behind the tools are to retrieve the data through the sensors for a specific state of the system and then to identify the specific state through the heuristic methods such as neural network, fuzzy logic, and decision matrix. The proper usage of the heuristic methods will enhance the performance of the diagnostic procedure when together used with the statistical signal processing. In this paper, the methodologies in using the above 3 heuristic methods for the diagnostics of the rotor system are established and also tested and validated for the data retrieved from the rolling element bearing and journal bearing supported system.

  • PDF

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.33-38
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific race image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based fare model.

  • PDF

Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment (WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘)

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.