• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.028 seconds

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Higher-Order Conditional Random Field established with CNNs for Video Object Segmentation

  • Hao, Chuanyan;Wang, Yuqi;Jiang, Bo;Liu, Sijiang;Yang, Zhi-Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3204-3220
    • /
    • 2021
  • We perform the task of video object segmentation by incorporating a conditional random field (CRF) and convolutional neural networks (CNNs). Most methods employ a CRF to refine a coarse output from fully convolutional networks. Others treat the inference process of the CRF as a recurrent neural network and then combine CNNs and the CRF into an end-to-end model for video object segmentation. In contrast to these methods, we propose a novel higher-order CRF model to solve the problem of video object segmentation. Specifically, we use CNNs to establish a higher-order dependence among pixels, and this dependence can provide critical global information for a segmentation model to enhance the global consistency of segmentation. In general, the optimization of the higher-order energy is extremely difficult. To make the problem tractable, we decompose the higher-order energy into two parts by utilizing auxiliary variables and then solve it by using an iterative process. We conduct quantitative and qualitative analyses on multiple datasets, and the proposed method achieves competitive results.

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Adaptive Learning Based on Bit-Significance Optimization with Hebbian Learning Rule and Its Electro-Optic Implementation (Hebb의 학습 법칙과 화소당 가중치 최소화 기법에 의한 적응학습 및 그의 전기광학적 구현)

  • Lee, Soo-Young;Shim, Chang-Sup;Koh, Sang-Ho;Jang, Ju-Seog;Shin, Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.108-114
    • /
    • 1989
  • Introducing and optimizing bit-significance to the Hopfield model, ten highly correlated binary images, i.e., numbers "0" to "9", are successfully stored and retrieved in a $6{}8$ node system. Unlike many other neural network models, this model has stronger error correction capability for correlated images such as "6","8","3", and "9". The bit significance optimization is regarded as an adaptive learning process based on least-mean-square error algorithm, and may be implemented with Widrow-Hoff neural nets optimizer. A design for electro-optic implementation including the adaptive optimization networks is also introduced.

  • PDF

Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube (라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화)

  • Lee, Kwangk-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1065-1071
    • /
    • 2012
  • Wind energy is becoming one of the most preferable alternatives to conventional sources of electric power that rely on fossil fuels. For stable electric power generation, constant rotating speed control of a wind turbine is performed through pitch control and stall control of the turbine blades. Recently, variable pitch control has been implemented in modern wind turbines to harvest more energy at variable wind speeds that are even lower than the rated one. Although wind turbine pitch controllers are currently optimized using a step response via the Ziegler-Nichols auto-tuning process, this approach does not satisfy the requirements of variable pitch control. In this study, the variable pitch controller was optimized by a genetic algorithm using a neural network model that was constructed by the Latin Hypercube sampling method to improve the Ziegler-Nichols auto-tuning process. The optimized solution shows that the root mean square error, rise time, and settle time are respectively improved by more than 7.64%, 15.8%, and 15.3% compared with the corresponding initial solutions obtained by the Ziegler-Nichols auto-tuning process.

Hyperparameter Optimization for Image Classification in Convolutional Neural Network (합성곱 신경망에서 이미지 분류를 위한 하이퍼파라미터 최적화)

  • Lee, Jae-Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.148-153
    • /
    • 2020
  • In order to obtain high accuracy with an convolutional neural network(CNN), it is necessary to set the optimal hyperparameters. However, the exact value of the hyperparameter that can make high performance is not known, and the optimal hyperparameter value is different based on the type of the dataset, therefore, it is necessary to find it through various experiments. In addition, since the range of hyperparameter values is wide and the number of combinations is large, it is necessary to find the optimal values of the hyperparameters after the experimental design in order to save time and computational costs. In this paper, we suggest an algorithm that use the design of experiments and grid search algorithm to determine the optimal hyperparameters for a classification problem. This algorithm determines the optima values of the hyperparameters that yields high performance using the factorial design of experiments. It is shown that the amount of computational time can be efficiently reduced and the accuracy can be improved by performing a grid search after reducing the search range of each hyperparameter through the experimental design. Moreover, Based on the experimental results, it was shown that the learning rate is the only hyperparameter that has the greatest effect on the performance of the model.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

A Study on the Optimization of Fire Awareness Model Based on Convolutional Neural Network: Layer Importance Evaluation-Based Approach (합성곱 신경망 기반 화재 인식 모델 최적화 연구: Layer Importance Evaluation 기반 접근법)

  • Won Jin;Mi-Hwa Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.444-452
    • /
    • 2024
  • This study proposes a deep learning architecture optimized for fire detection derived through Layer Importance Evaluation. In order to solve the problem of unnecessary complexity and operation of the existing Convolutional Neural Network (CNN)-based fire detection system, the operation of the inner layer of the model based on the weight and activation values was analyzed through the Layer Importance Evaluation technique, the layer with a high contribution to fire detection was identified, and the model was reconstructed only with the identified layer, and the performance indicators were compared and analyzed with the existing model. After learning the fire data using four transfer learning models: Xception, VGG19, ResNet, and EfficientNetB5, the Layer Importance Evaluation technique was applied to analyze the weight and activation value of each layer, and then a new model was constructed by selecting the top rank layers with the highest contribution. As a result of the study, it was confirmed that the implemented architecture maintains the same performance with parameters that are about 80% lighter than the existing model, and can contribute to increasing the efficiency of fire monitoring equipment by outputting the same performance in accuracy, loss, and confusion matrix indicators compared to conventional complex transfer learning models while having a learning speed of about 3 to 5 times faster.

Optimal Lattice Structure Thermal Conductivity Design using Machine Learning-based Design Optimization (기계학습 기반 설계 기법을 활용한 격자 구조 열전도도 최적설계)

  • Taehyeon Kang;Sangryun Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.5
    • /
    • pp.353-359
    • /
    • 2024
  • Lattice structures exhibit good thermal performance due to the high surface-to-volume ratio. Previous studies have investigated the thermal conductivity to improve the performance of lattice structures. However, the conventional approach simplifies the geometry of lattice structures using limited design parameters due to the high computational or experimental costs. This study introduces a lattice structure with optimal thermal conductivity. We propose a lattice beam shape that overcomes the existing design limitations through shape optimization using artificial intelligence. First, the beam shape of the body-centered (BC) lattice structure is modeled as a smooth Bézier curve. Second, the coordinates of the control points of the Bézier curve are randomly set to obtain training data. Finally, the optimal beam shape is designed by generating a beam shape with excellent effective thermal conductivity through a neural network combined with a genetic algorithm. A mechanism of optimized thermal conductivity is suggested and the optimal beam shape is compared with a lattice structure with optimal elastic stiffness. The results of this study are expected to provide an appropriate structural solution for lattice structures under various thermal conditions in the future.