• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.027 seconds

Efficiency Optimization Control of IPMSM using FNN-PI (FNN-PI를 이용한 IPMSM의 효율최적화 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jun, Young-Sun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.395-398
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In order to maximize the efficiency in such applications, this paper proposes the FNN(Fuzzy Neural-Network)-Pl controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA). This paper considers the parameter variation about the motor operation. The operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

BPN Based Approximate Optimization for Constraint Feasibility (구속조건의 가용성을 보장하는 신경망기반 근사최적설계)

  • Lee, Jong-Soo;Jeong, Hee-Seok;Kwak, No-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.141-144
    • /
    • 2007
  • Given a number of training data, a traditional BPN is normally trained by minimizing the absolute difference between target outputs and approximate outputs. When BPN is used as a meta-model for inequality constraint function, approximate optimal solutions are sometimes actually infeasible in a case where they are active at the constraint boundary. The paper describes the development of the efficient BPN based meta-model that enhances the constraint feasibility of approximate optimal solution. The modified BPN based meta-model is obtained by including the decision condition between lower/upper bounds of a constraint and an approximate value. The proposed approach is verified through a simple mathematical function and a ten-bar planar truss problem.

  • PDF

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.

Active control of flow around a 2D square cylinder using plasma actuators (2차원 사각주 주위 유동의 플라즈마 능동제어에 대한 연구)

  • Paraskovia Kolesova;Mustafa G. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.44-54
    • /
    • 2024
  • This study investigates the effectiveness of using a plasma actuator for active control of turbulent flow around a finite square cylinder. The primary objective is to analyze the impact of plasma actuators on flow separation and wake region characteristics, which are critical for reducing drag and suppressing vortex-induced vibrations. Direct Numerical Simulation (DNS) was employed to explore the flow dynamics at various operational parameters, including different actuation frequencies and voltages. The proposed methodology employs a neural network trained using the Proximal Policy Optimization (PPO) algorithm to determine optimal control policies for plasma actuators. This network is integrated with a computational fluid dynamics (CFD) solver for real-time control. Results indicate that this deep reinforcement learning (DRL)-based strategy outperforms existing methods in controlling flow, demonstrating robustness and adaptability across various flow conditions, which highlights its potential for practical applications.

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.

A Method of Activity Recognition in Small-Scale Activity Classification Problems via Optimization of Deep Neural Networks (심층 신경망의 최적화를 통한 소규모 행동 분류 문제의 행동 인식 방법)

  • Kim, Seunghyun;Kim, Yeon-Ho;Kim, Do-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Recently, Deep learning has been used successfully to solve many recognition problems. It has many advantages over existing machine learning methods that extract feature points through hand-crafting. Deep neural networks for human activity recognition split video data into frame images, and then classify activities by analysing the connectivity of frame images according to the time. But it is difficult to apply to actual problems which has small-scale activity classes. Because this situations has a problem of overfitting and insufficient training data. In this paper, we defined 5 type of small-scale human activities, and classified them. We construct video database using 700 video clips, and obtained a classifying accuracy of 74.00%.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.