• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.023 seconds

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

A SEM-ANN Two-step Approach for Predicting Determinants of Cloud Service Use Intention (SEM-Artificial Neural Network 2단계 접근법에 의한 클라우드 스토리지 서비스 이용의도 영향요인에 관한 연구)

  • Guangbo Jiang;Sundong Kwon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.91-111
    • /
    • 2023
  • This study aims to identify the influencing factors of intention to use cloud services using the SEM-ANN two-step approach. In previous studies of SEM-ANN, SEM presented R2 and ANN presented MSE(mean squared error), so analysis performance could not be compared. In this study, R2 and MSE were calculated and presented by SEM and ANN, respectively. Then, analysis performance was compared and feature importances were compared by sensitivity analysis. As a result, the ANN default model improved R2 by 2.87 compared to the PLS model, showing a small Cohen's effect size. The ANN optimization model improved R2 by 7.86 compared to the PLS model, showing a medium Cohen effect size. In normalized feature importances, the order of importances was the same for PLS and ANN. The contribution of this study, which links structural equation modeling to artificial intelligence, is that it verified the effect of improving the explanatory power of the research model while maintaining the order of importance of independent variables.

Design Optimization of an Accumulator for Noise Reduction of Rotary Compressor (공조용 로터리 압축기 소음저감을 위한 어큐뮬레이터 최적설계)

  • Lee, Ui-Yoon;Kim, Bong-Joon;Lee, Jeong-Bae;Sung, Chun-Mo;Lee, Un-Seop;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.759-766
    • /
    • 2011
  • Recently, noise reduction in room air conditioners has been one of the important issues as well as cooling efficiency. The rotary compressor is the dominant noise source in an air conditioner. A number of studies have been conducted on reducing compressor noise through improving muffler and resonator design. However the noise from the accumulator, a noise delivering path between compressor and air conditioner, is not fully taken into consideration. The accumulator contains a large inner cavity, and usually generates additional resonance noise during operation. This paper aims to conduct an optimal design for reducing accumulator noise by maximizing the transmission loss within the target frequency range that represents high-order nonlinearity. Design of experiments and radial basis function neural network are used in the context of approximate meta-models, and genetic algorithm is used as an optimization tool.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Adaptive-FNIS Control for Efficiency Optimization of IPMSM Drive (IPMSM 드라이브의 효율 최적화를 위한 Adaptive-FNIS 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.122-124
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In order to maximize the efficiency in such applications, this paper proposes the Adaptive-FNIS(Fuzzy Neural Network Inference System). The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal d-axis current $i_d$. This paper considers the parameter variation about the motor operation. The operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Grid-based Output Control for Wind Farm Using PSO (PSO를 이용한 계통연계를 위한 풍력발전단지의 출력 제어)

  • Moon, Il Kwon;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1092-1097
    • /
    • 2014
  • In this paper, we propose the grid-based output control method for wind farm. To do this, we propose the output control method using the PSO(Particle Swarm Optimization) algorithm. Secondly, we propose the method for detecting the harmonics using STFT(Short-Time Fourier Transform) algorithm. And last, we propose the method for compensating the harmonics using neural network. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

Resolutions of NP-complete Optimization Problem (최적화 문제 해결 기법 연구)

  • Kim Dong-Yun;Kim Sang-Hui;Go Bo-Yeon
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.1
    • /
    • pp.146-158
    • /
    • 1991
  • In this paper, we deal with the TSP (Traveling Salesperson Problem) which is well-known as NP-complete optimization problem. the TSP is applicable to network routing. task allocation or scheduling. and VLSI wiring. Well known numerical methods such as Newton's Metheod. Gradient Method, Simplex Method can not be applicable to find Global Solution but the just give Local Minimum. Exhaustive search over all cyclic paths requires 1/2 (n-1) ! paths, so there is no computer to solve more than 15-cities. Heuristic algorithm. Simulated Annealing, Artificial Neural Net method can be used to get reasonable near-optimum with polynomial execution time on problem size. Therefore, we are able to select the fittest one according to the environment of problem domain. Three methods are simulated about symmetric TSP with 30 and 50-city samples and are compared by means of the quality of solution and the running time.

  • PDF

Estimation of Qualities and Inference of Operating Conditions for Optimization of Wafer Fabrication Using Artificial Intelligent Methods

  • Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1101-1106
    • /
    • 2005
  • The purpose of this study was to develop a process management system to manage ingot fabrication and the quality of the ingot. The ingot is the first manufactured material of wafers. Operating data (trace parameters) were collected on-line but quality data (measurement parameters) were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Thus, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were employed for data generation, and then modeling was accomplished, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to the control parameters. The dynamic polynomial neural network (DPNN) was used for data modeling that used the ingot fabrication data.

  • PDF