A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.
Due to the advance of e-commerce systems, the number of people using online shopping and products has significantly increased. Therefore, the need for an accurate recommendation system is becoming increasingly more important. Recurrent neural network is a deep-learning algorithm that utilizes sequential information in training. In this paper, an evaluation is performed on the application of recurrent neural networks to recommendation systems. We evaluated three recurrent algorithms (RNN, LSTM and GRU) and three optimal algorithms(Adagrad, RMSProp and Adam) which are commonly used. In the experiments, we used the TensorFlow open source library produced by Google and e-commerce session data from RecSys Challenge 2015. The results using the optimal hyperparameters found in this study are compared with those of RecSys Challenge 2015 participants.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.2
/
pp.65-74
/
2009
In optimizing the neural network structure, there are two methods of the pruning scheme and the constructive scheme. In this paper we use the pruning scheme to optimize neural network structure, and the genetic algorithm to find out its optimum node pruning. In the conventional researches, the input and hidden layers were optimized separately. On the contrary we attempted to optimize the two layers simultaneously by encoding two layers in a chromosome. The offspring networks inherit the weights from the parent. For teaming, we used the existing error back-propagation algorithm. In our experiment with various databases from UCI Machine Learning Repository, we could get the optimal performance when the network size was reduced by about $8{\sim}25%$. As a result of t-test the proposed method was shown better performance, compared with other pruning and construction methods through the cross-validation.
Dam, Roos Sophia de Freitas;dos Santos, Marcelo Carvalho;do Desterro, Filipe Santana Moreira;Salgado, William Luna;Schirru, Roberto;Salgado, Cesar Marques
Nuclear Engineering and Technology
/
v.53
no.7
/
pp.2334-2340
/
2021
Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.
JSTS:Journal of Semiconductor Technology and Science
/
v.11
no.3
/
pp.135-145
/
2011
Accurate process characterization and optimization are the first step for a successful advanced process control (APC), and they should be followed by continuous monitoring and control in order to run manufacturing processes most efficiently. In this paper, process characterization and recipe optimization methods with multiple outputs are presented in high density plasma-chemical vapor deposition (HDP-CVD) silicon dioxide deposition process. Five controllable process variables of Top $SiH_4$, Bottom $SiH_4$, $O_2$, Top RF Power, and Bottom RF Power, and two responses of interest, such as deposition rate and uniformity, are simultaneously considered employing both statistical response surface methodology (RSM) and neural networks (NNs) based genetic algorithm (GA). Statistically, two phases of experimental design was performed, and the established statistical models were optimized using performance index (PI). Artificial intelligently, NN process model with two outputs were established, and recipe synthesis was performed employing GA. Statistical RSM offers minimum numbers of experiment to build regression models and response surface models, but the analysis of the data need to satisfy underlying assumption and statistical data analysis capability. NN based-GA does not require any underlying assumption for data modeling; however, the selection of the input data for the model establishment is important for accurate model construction. Both statistical and artificial intelligent methods suggest competitive characterization and optimization results in HDP-CVD $SiO_2$ deposition process, and the NN based-GA method showed 26% uniformity improvement with 36% less $SiH_4$ gas usage yielding 20.8 ${\AA}/sec$ deposition rate.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.26
no.12
/
pp.9-20
/
2012
This paper proposes the efficiency optimization control of interior permanent magnet synchronous motor(IPMSM) drive using series connected-fuzzy neural network PI(SC-FNPI) controller. The PI controller is generally used to control IPMSM drive in industrial field. However, the PI controller has problem which is falling control performance about parameter variation such as command speed, load torque and inertia due to fixed gain of PI controller. Therefore, to improve performance of PI controller, this paper proposes SC-FNPI controller adjusted input of PI controller by FNN controller according to operating conditions. Also, this paper proposes efficiency optimization control which is improving efficiency with minimize loss. The SC-FNPI controller proposed in this paper is compared control performance with conventional FNN and PI controller about command speed, load torque and inertia variation. And the efficiency optimization control is compared with $i_d=0$ control about loss and efficiency. The SC-FNPI controller proposed in this paper shows more excellent control performance for rising time, overshoot and steady-state error. Also efficiency optimization control is increased efficiency by reducing loss.
The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.
Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
Journal of Computing Science and Engineering
/
v.12
no.1
/
pp.24-35
/
2018
Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.
Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
International Journal of Control, Automation, and Systems
/
v.2
no.4
/
pp.423-434
/
2004
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.
This paper is intended to determine the optimal processing parameters applied to the dyeing procedure so that the desired color strength of a raw fabric can be achieved. Moreover, the processing parameters are also used for constructing a system to predict the fabric quality. The fabric selected is the nylon and Lycra blend. The dyestuff used for dyeing is acid dyestuff and the dyeing method is one-bath-two-section. The Taguchi quality method is applied for parameter design. The analysis of variance (ANOVA) is applied to arrange the optimal condition, significant factors and the percentage contributions. In the experiment, according to the target value, a confirmation experiment is conducted to evaluate the reliability. Furthermore, the genetic algorithm (GA) is combined with the back propagation neural network (BPNN) in order to establish the forecasting system for searching the best connecting weights of BPNN. It can be shown that this combination not only enhances the efficiency of the learning algorithm, but also decreases the dependency of the initial condition during the network training. Most of all, the robustness of the learning algorithm will be increased and the quality characteristic of fabric will be precisely predicted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.