• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.028 seconds

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.

Performance Evaluation of Recurrent Neural Network Algorithms for Recommendation System in E-commerce (전자상거래 추천시스템을 위한 순환신경망 알고리즘들의 성능평가)

  • Seo, Jihye;Yong, Hwan-Seung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.440-445
    • /
    • 2017
  • Due to the advance of e-commerce systems, the number of people using online shopping and products has significantly increased. Therefore, the need for an accurate recommendation system is becoming increasingly more important. Recurrent neural network is a deep-learning algorithm that utilizes sequential information in training. In this paper, an evaluation is performed on the application of recurrent neural networks to recommendation systems. We evaluated three recurrent algorithms (RNN, LSTM and GRU) and three optimal algorithms(Adagrad, RMSProp and Adam) which are commonly used. In the experiments, we used the TensorFlow open source library produced by Google and e-commerce session data from RecSys Challenge 2015. The results using the optimal hyperparameters found in this study are compared with those of RecSys Challenge 2015 participants.

Genetic Algorithm for Node P겨ning of Neural Networks (신경망의 노드 가지치기를 위한 유전 알고리즘)

  • Heo, Gi-Su;Oh, Il-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.65-74
    • /
    • 2009
  • In optimizing the neural network structure, there are two methods of the pruning scheme and the constructive scheme. In this paper we use the pruning scheme to optimize neural network structure, and the genetic algorithm to find out its optimum node pruning. In the conventional researches, the input and hidden layers were optimized separately. On the contrary we attempted to optimize the two layers simultaneously by encoding two layers in a chromosome. The offspring networks inherit the weights from the parent. For teaming, we used the existing error back-propagation algorithm. In our experiment with various databases from UCI Machine Learning Repository, we could get the optimal performance when the network size was reduced by about $8{\sim}25%$. As a result of t-test the proposed method was shown better performance, compared with other pruning and construction methods through the cross-validation.

A novel radioactive particle tracking algorithm based on deep rectifier neural network

  • Dam, Roos Sophia de Freitas;dos Santos, Marcelo Carvalho;do Desterro, Filipe Santana Moreira;Salgado, William Luna;Schirru, Roberto;Salgado, Cesar Marques
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2334-2340
    • /
    • 2021
  • Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.

Multiple-inputs Dual-outputs Process Characterization and Optimization of HDP-CVD SiO2 Deposition

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Chun, Sang-Hyun;Han, Seung-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.135-145
    • /
    • 2011
  • Accurate process characterization and optimization are the first step for a successful advanced process control (APC), and they should be followed by continuous monitoring and control in order to run manufacturing processes most efficiently. In this paper, process characterization and recipe optimization methods with multiple outputs are presented in high density plasma-chemical vapor deposition (HDP-CVD) silicon dioxide deposition process. Five controllable process variables of Top $SiH_4$, Bottom $SiH_4$, $O_2$, Top RF Power, and Bottom RF Power, and two responses of interest, such as deposition rate and uniformity, are simultaneously considered employing both statistical response surface methodology (RSM) and neural networks (NNs) based genetic algorithm (GA). Statistically, two phases of experimental design was performed, and the established statistical models were optimized using performance index (PI). Artificial intelligently, NN process model with two outputs were established, and recipe synthesis was performed employing GA. Statistical RSM offers minimum numbers of experiment to build regression models and response surface models, but the analysis of the data need to satisfy underlying assumption and statistical data analysis capability. NN based-GA does not require any underlying assumption for data modeling; however, the selection of the input data for the model establishment is important for accurate model construction. Both statistical and artificial intelligent methods suggest competitive characterization and optimization results in HDP-CVD $SiO_2$ deposition process, and the NN based-GA method showed 26% uniformity improvement with 36% less $SiH_4$ gas usage yielding 20.8 ${\AA}/sec$ deposition rate.

Efficiency Optimization Control of IPMSM drive using SC-FNPI Controller (SC-FNPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.9-20
    • /
    • 2012
  • This paper proposes the efficiency optimization control of interior permanent magnet synchronous motor(IPMSM) drive using series connected-fuzzy neural network PI(SC-FNPI) controller. The PI controller is generally used to control IPMSM drive in industrial field. However, the PI controller has problem which is falling control performance about parameter variation such as command speed, load torque and inertia due to fixed gain of PI controller. Therefore, to improve performance of PI controller, this paper proposes SC-FNPI controller adjusted input of PI controller by FNN controller according to operating conditions. Also, this paper proposes efficiency optimization control which is improving efficiency with minimize loss. The SC-FNPI controller proposed in this paper is compared control performance with conventional FNN and PI controller about command speed, load torque and inertia variation. And the efficiency optimization control is compared with $i_d=0$ control about loss and efficiency. The SC-FNPI controller proposed in this paper shows more excellent control performance for rising time, overshoot and steady-state error. Also efficiency optimization control is increased efficiency by reducing loss.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Toward Optimal FPGA Implementation of Deep Convolutional Neural Networks for Handwritten Hangul Character Recognition

  • Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Optimization of the Processing Conditions and Prediction of the Quality for Dyeing Nylon and Lycra Blended Fabrics

  • Kuo Chung-Feng Jeffrey;Fang Chien-Chou
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.344-351
    • /
    • 2006
  • This paper is intended to determine the optimal processing parameters applied to the dyeing procedure so that the desired color strength of a raw fabric can be achieved. Moreover, the processing parameters are also used for constructing a system to predict the fabric quality. The fabric selected is the nylon and Lycra blend. The dyestuff used for dyeing is acid dyestuff and the dyeing method is one-bath-two-section. The Taguchi quality method is applied for parameter design. The analysis of variance (ANOVA) is applied to arrange the optimal condition, significant factors and the percentage contributions. In the experiment, according to the target value, a confirmation experiment is conducted to evaluate the reliability. Furthermore, the genetic algorithm (GA) is combined with the back propagation neural network (BPNN) in order to establish the forecasting system for searching the best connecting weights of BPNN. It can be shown that this combination not only enhances the efficiency of the learning algorithm, but also decreases the dependency of the initial condition during the network training. Most of all, the robustness of the learning algorithm will be increased and the quality characteristic of fabric will be precisely predicted.