• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.031 seconds

Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index (최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chan;Oh, Sung-Kwun;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Optimization of Expanding Velocity for a High-speed Tube Expander Using a Genetic Algorithm with a Neural Network (유전자 알고리즘과 신경회로망을 이용한 고속 확관기의 확관속도 최적화)

  • Chung Won Jee;Kim Jae Lyang;Jin Han Kim;Hong Dae Sun;Kang Hong Sik;Kim Dong Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.27-32
    • /
    • 2005
  • This paper presents the optimization of expanding velocity for tube expanding process in the manufacturing of a heat exchanger. In specific, the expanding velocity has a great influence on the performance of a heat exchanger because it is a key variable determining the quantity of tube expending at assembly stage as well as a key Parameter determining overall production rate. The simulation showed that the genetic algorithm used in this paper resulted in the optimal tube expanding velocity by performing the following series of iteration; the generation of arbitrary population for tube expanding parameters, consequently the generation of tube expanding velocities, the evaluation of tube expanding quantity using the pre-trained data of plastic deformation by means of a neural network and finally the generation of next population using a penalty faction and a Roulette wheel method.

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet (AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구)

  • Park, Young-Whan;Rhee, Se-Hun;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

A study on the response surface model and the neural network model to optimize the suspension characteristics for Korean High Speed Train (한국형 고속전철 현가장치 최적설계를 위한 반응표면모델과 유전자 알고리즘 모델에 관한 연구)

  • Park Chankyoung;Kim Youngguk;Kim Kiwhan;Bae Daesung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.589-594
    • /
    • 2004
  • In design of suspension system for KHST, it was applied the approximated optimization method using meta-models which called Response Surface Model and Neural Network Model for 29 design variables and 46 performance index. These models was coded using correlation between design variables and performance indices that is made by the 66 times iterative execution through the design of experimental table consisted orthogonal array L32 and D-Optimal design table. The results show that the optimization process is very efficient and simply applicable for complex mechanical system such as railway vehicle system. Also it was compared with the sensitivity of some design variables in order to know the characteristics of two models. This paper describes the general method for dynamic analysis and design process of railway vehicle system applied to KHST development, and proposed the efficient methods for vibration mode analysis process dealing with test data and the function based approximation method using meta-model applicable for a complex mechanical system. This method will be able to apply to the other railway vehicle system in oder to systematize and generalize the design process of railway vehicle dynamic system.

  • PDF

Minimum-Time Trajectory Planning Ensuring Collision-Free Motion for Two Robots : Neural Optimization Network Approach (신경 최적화 회로망을 이용한 두 대의 로보트를 위한 최소시간 충돌회피 경로 계획)

  • Lee, Ji-Hong;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.44-52
    • /
    • 1990
  • A collision-free trajectory planning for two robots with designated paths is considered. The proposed method is based on the concept of decomposing the planning problem into two steps: one is determining coordination of two robots, and the other is velocity planning with determined coordination. Dynamics and maximum allowable joint velocities are also taken into consideration in the whole planning process. The proposed algorithm is converted into numerical calculation version based on neural optimization network. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robot in common workspace is illustrated.

  • PDF

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.