• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.027 seconds

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트컴퓨팅 기법)

  • Choi Woo-Kyung;Kim Seong-Joo;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Optimization of Design Parameters of a EPPR Valve Solenoid using Artificial Neural Network (인공 신경회로망을 이용한 전자비례 감압밸브의 솔레노이드 형상 최적화)

  • Yoon, Ju Ho;Nguyen, Minh Nhat;Lee, Hyun Su;Youn, Jang Won;Kim, Dang Ju;Lee, Dong Won;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2016
  • Unlike the commonly used On/Off solenoid, constant attraction force which is independent of plunger displacement is a considerably important characteristic to proportional solenoid of the EPPR Valve. Attraction force uniformity is mainly affected by the internal shape design parameters. Due to a number of shape design parameters, the optimal parameter values are very complex and time consuming to find by trial and error method. Much research has been conducted or are still in progress to find the optimal parameter values by applying various optimization techniques like Genetic Algorithm, Evolution Strategy, Simulated Annealing, or the Taguchi method. In this paper, the design parameters which have primary effects on the attraction force uniformity and the average attraction force are decided by main effects analysis of Design of Experiments. Optimal parameter values are derived using finite-element analysis and a neural network model.

HSE Block : Automatic Optimization of the Number of Convolutional Layer Filters using SE Block (HSE Block : SE Block을 활용한 합성곱 신경망 필터 수 자동 최적화)

  • Tae-Wook Kim;Hyeon-Jin Jung;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • In this paper, we are going to study how we can automatically determine the number of convolutional filters for the optimal model without a search algorithm. This paper proposes HSE Block by connecting SE Block proposed in SENet to a convolutional neural network and connecting a convolutional neural network not learned at the bottom. An experiment was conducted to increase the number of filters by one per 3 epoch using two datasets for the HSEBlock model and to increase the number of filters by the value in the filter. Based on this experiment, the model was constructed with multi-layer HSE Block instead of layer HSE Block, and the experiment was carried out using a dataset that was more difficult to learn than the one used in the previous experiment. The effect of HSE Block was verified by conducting an experiment with the number of HSE Blocks set to 2, 3, 4, and 5 on a dataset that is more difficult to learn than before.

Two-Stage Neural Network Optimization for Robust Solar Photovoltaic Forecasting (강건한 태양광 발전량 예측을 위한 2단계 신경망 최적화)

  • Jinyeong Oh;Dayeong So;Jihoon Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.31-34
    • /
    • 2024
  • 태양광 에너지는 탄소 중립 이행을 위한 주요 방안으로 많은 주목을 받고 있다. 태양광 발전량은 여러 환경적 요인에 따라 크게 달라질 수 있으므로, 정확한 발전량 예측은 전력 네트워크의 안정성과 효율적인 에너지 관리에 근본적으로 중요하다. 대표적인 인공지능 기술인 신경망(Neural Network)은 불안정한 환경 변수와 복잡한 상호작용을 효과적으로 학습할 수 있어 태양광 발전량 예측에서 우수한 성능을 도출하였다. 하지만, 신경망은 모델의 구조나 초매개변수(Hyperparameter)를 최적화하는 것은 복잡하고 시간이 많이 드는 작업이므로, 에너지 분야에서 실제 산업 적용에 한계가 존재한다. 본 논문은 2단계 신경망 최적화를 통한 태양광 발전량 예측 기법을 제안한다. 먼저, 태양광 발전량 데이터 셋을 훈련 집합과 평가 집합으로 분할한다. 훈련 집합에서, 각기 다른 은닉층의 개수로 구성된 여러 신경망 모델을 구성하고, 모델별로 Optuna를 적용하여 최적의 초매개변숫값을 선정한다. 다음으로, 은닉층별 최적화된 신경망 모델을 이용해 훈련과 평가 집합에서는 각각 5겹 교차검증을 적용한 발전량 추정값과 예측값을 출력한다. 마지막으로, 스태킹 앙상블 방식을 채택해 기본 초매개변숫값으로 설정해도 우수한 성능을 도출하는 랜덤 포레스트를 이용하여 추정값을 학습하고, 평가 집합의 예측값을 입력으로 받아 최종 태양광 발전량을 예측한다. 인천 지역으로 실험한 결과, 제안한 방식은 모델링이 간편할 뿐만 아니라 여러 신경망 모델보다 우수한 예측 성능을 도출하였으며, 이를 바탕으로 국내 에너지 산업에 이바지할 수 있을 것으로 기대한다.

  • PDF

A new training method of multilayer neural networks using a hybrid of backpropagation algorithm and dynamic tunneling system (후향전파 알고리즘과 동적터널링 시스템을 조합한 다층신경망의 새로운 학습방법)

  • 조용현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.201-208
    • /
    • 1996
  • This paper proposes an efficient method for improving the training performance of the neural network using a hybrid of backpropagation algorithm and dynamic tunneling system.The backpropagation algorithm, which is the fast gradient descent method, is applied for high-speed optimization. The dynamic tunneling system, which is the deterministic method iwth a tunneling phenomenone, is applied for blobal optimization. Converging to the local minima by using the backpropagation algorithm, the approximate initial point for escaping the local minima is estimated by the pattern classification, and the simulation results show that the performance of proposed method is superior th that of backpropagation algorithm with randomized initial point settings.

  • PDF

A Fuzzy-Neural Network Based Human-Machine Interface for Voice Controlled Robots Trained by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Izumi, Kiyotaka;Kiguchi, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.411-414
    • /
    • 2003
  • Particle swarm optimization (PSO) is employed to train fuzzy-neural networks (FNN), which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. The system has been successfully employed in a real life situation for navigation of a mobile robot.

  • PDF

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization (다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF