• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.025 seconds

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

Optimum Design of Tire Crown Contour Utilizing Neural Network (신경회로망을 활용한 타이어 크라운형상 최적설계)

  • Cho, Jin-Rae;Shin, Sung-Woo;Jeong, Hyun-Sung;Kim, Nam-Jeon;Kim, Kee-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2142-2149
    • /
    • 2002
  • Contacting with ground in the post-card area size only, tire supports entire automobile weight. As well, it characterizes most of automobile running performance. Among the design parameters, the carcass contour becomes a key design factor. This paper deals with the time-effective optimal design of tire crown contour in order to improve the tire wear performance by employing a back-propagation neural network model.

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

A tracking controller using multi-layered neural networks

  • Bae, Byeong-Woo;Jeon, Gi-Joon;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.56-60
    • /
    • 1992
  • This paper addresses the problem of designing a neural network based controller for a discrete-time nonlinear dynamical system. Using two multi-layered neural networks we first design an indirect controller the weights of which are updated by the informations obtained from system identification. The weight update is executed by parameter optimization method under Lagrangian formulation. For the nonlinear dynamical system, we define several cost functions and by computer simulations analyze the control performances of them and the effects of penalty-weighting values.

  • PDF

Segmentation of Range Images Using Hierachical Structure of Neural Networks (계층적 구조의 신경회로망을 이용한 거리영상의 분할)

  • 정인갑;현기호;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.123-129
    • /
    • 1994
  • The segmentation of range image is essential to recognize the three dimensional object. Generally, surface curvature is well-known feature for segmentation and classification of the fange image, but it is sensitive to noies. In this paper, we propose the structure of hierarchical neural network using surface curvature for segmentation of range images. The hierarchical structure of neural networks is robust to noise and the result of segmentaion is better than conventional optimization method of single level.

  • PDF

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.

Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware (FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화)

  • Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.