• Title/Summary/Keyword: neural network defect detection

Search Result 48, Processing Time 0.025 seconds

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

Cascade Network Based Bolt Inspection In High-Speed Train

  • Gu, Xiaodong;Ding, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3608-3626
    • /
    • 2021
  • The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.

Anomaly Detection of Generative Adversarial Networks considering Quality and Distortion of Images (이미지의 질과 왜곡을 고려한 적대적 생성 신경망과 이를 이용한 비정상 검출)

  • Seo, Tae-Moon;Kang, Min-Guk;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.171-179
    • /
    • 2020
  • Recently, studies have shown that convolution neural networks are achieving the best performance in image classification, object detection, and image generation. Vision based defect inspection which is more economical than other defect inspection, is a very important for a factory automation. Although supervised anomaly detection algorithm has far exceeded the performance of traditional machine learning based method, it is inefficient for real industrial field due to its tedious annotation work, In this paper, we propose ADGAN, a unsupervised anomaly detection architecture using the variational autoencoder and the generative adversarial network which give great results in image generation task, and demonstrate whether the proposed network architecture identifies anomalous images well on MNIST benchmark dataset as well as our own welding defect dataset.

Efficient Mechanism for QFN Solder Defect Detection (QFN 납땜 불량 검출을 위한 효율적인 검사 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.367-370
    • /
    • 2016
  • QFN(Quad Flat No-leads package) is one of the SMD(Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network(CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image(Red, Blue, Green) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. Later, further research is needed to detect other QFN.

  • PDF

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Development of Image Defect Detection Model Using Machine Learning (기계 학습을 활용한 이미지 결함 검출 모델 개발)

  • Lee, Nam-Yeong;Cho, Hyug-Hyun;Ceong, Hyi-Thaek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.513-520
    • /
    • 2020
  • Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.

Rubber O-ring defect detection using adaptive binarization, Convex Hull preprocessing, and convolutional neural network learning method (적응형 이진화와 Convex Hull 전처리 및 합성곱 신경망 학습 방법을 적용한 고무 오링 불량 판별)

  • Seong, Eun-San;Kim, Hyun-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.623-625
    • /
    • 2021
  • Rubber o-rings are produced by conventional injection molding methods. In this case, products that are not normally molded are determined to be defective. However, if images acquired during image-based reading are read as original, there is a problem of poor accuracy. We have thus learned from convolutional neural networks using adaptive binarization and Convex Hull algorithms by extracting only rubber oring parts from the original images through pre-processing. During the test process, it was confirmed that the defect detection performance of the learning method applied pre-processing was better than the standard suggested.

  • PDF

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.