• Title/Summary/Keyword: neural network defect detection

Search Result 48, Processing Time 0.019 seconds

A neural network approach to defect classification on printed circuit boards (인쇄 회로 기판의 결함 검출 및 인식 알고리즘)

  • An, Sang-Seop;No, Byeong-Ok;Yu, Yeong-Gi;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.337-343
    • /
    • 1996
  • In this paper, we investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two reference image data by using a low level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. This results in defects image only. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. All of the image data are formed in a bit level for the reduction of data size as well as time saving. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification, and high speed process by adopting a simple logic operation.

  • PDF

The Defect Detection and Evaluation of Austenitic Stainless Steel 304 Weld Zone using Ultrasonic Wave and Neuro (초음파와 신경망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 검출 및 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.64-73
    • /
    • 1998
  • This paper is concerned with defects detection and evaluation of heat affected zone (HAZ) in austenitic stainless steel type 304 by ultrasonic wave and neural network. In experiment, the reflected ultrasonic defect signals from artificial defects (side hole, vertical hole, notch) of HAZ appears as beam distance of prove-defect, distance of probe-surface, depth of defect-surface on CRT. For defect classification simulation, neural network system was organized using total results of ultrasonic experiment. The organized neural network system was learned with the accuracy of 99%. Also it could be classified with the accuracy of 80% in side hole, and 100% in vertical hole, 90% in notch about ultrasonic pattern recognition. Simulation results of neural network agree fairly well with results of ultrasonic experiment. Thus were think that the constructed system (ultrasonic wave - neural network) in this work is useful for defects dection and classification such as holes and notches in HAZ of austenitic stainless steel 304.

  • PDF

Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology (AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출)

  • 정의식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection (제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.108-111
    • /
    • 2022
  • Applying deep learning to machine vision systems for defect detection of products requires vast amounts of training data about various defect cases. However, since data imbalance occurs according to the type of defect in the actual manufacturing industry, it takes a lot of time to collect product images enough to generalize defect cases. In this paper, we apply a Siamese neural network that can be learned with even a small amount of data to product defect detection, and modify the image pairing method and contrastive loss function by properties the situation of product defect image data. We indirectly evaluated the embedding performance of Siamese neural networks using AUC-ROC, and it showed good performance when the images only paired among same products, not paired among defective products, and learned with exponential contrastive loss.

  • PDF

A Study on the Defect Classification and Evaluation in Weld Zone of Austenitic Stainless Steel 304 Using Neural Network (신경회로망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 분류 및 평가에 관한 연구)

  • Lee, Won;Yoon, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.149-159
    • /
    • 1998
  • The importance of soundness and safety evaluation in weld zone using by the ultrasonic wave has been recently increased rapidly because of the collapses of huge structures and safety accidents. Especially, the ultrasonic method that has been often used for a major non-destructive testing(NDT) technique in many engineering fields plays an important role as a volume test method. Hence, the defecting any defects of weld Bone in austenitic stainless steel type 304 using by ultrasonic wave and neural network is explored in this paper. In order to detect defects, a distance amplitude curve on standard scan sensitivity and preliminary scan sensitivity represented of the relation between ultrasonic probe, instrument, and materials was drawn based on a quantitative standard. Also, a total of 93% of defect types by testing 30 defect patterns after organizing neural network system, which is learned with an accuracy of 99%, based on ultrasonic evaluation is distinguished in order to classify defects such as holes or notches in experimental results. Thus, the proposed ultrasonic wave and neural network is useful for defect detection and Ultrasonic Non-Destructive Evaluation(UNDE) of weld zone in austenitic stainless steel 304.

  • PDF

LCD Defect Detection using Neural-network based on BEP (BEP기반의 신경회로망을 이용한 LCD 패널 결함 검출)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

Application of YOLOv5 Neural Network Based on Improved Attention Mechanism in Recognition of Thangka Image Defects

  • Fan, Yao;Li, Yubo;Shi, Yingnan;Wang, Shuaishuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.245-265
    • /
    • 2022
  • In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.

A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing (CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog (신경회로망을 이용한 공작기계 주축용 베어링의 고장검지)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images (컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.