• 제목/요약/키워드: neural network control

Search Result 2,579, Processing Time 0.028 seconds

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

A Novel Vehicle Counting Method using Accumulated Movement Analysis (누적 이동량 분석을 통한 영상 기반 차량 통행량 측정 방법)

  • Lim, Seokjae;Jung, Hyeonseok;Kim, Wonjun;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • With the rapid increase of vehicles, various traffic problems, e.g., car crashes, traffic congestions, etc, frequently occur in the road environment of the urban area. To overcome such traffic problems, intelligent transportation systems have been developed with a traffic flow analysis. The traffic flow, which can be estimated by the vehicle counting scheme, plays an important role to manage and control the urban traffic. In this paper, we propose a novel vehicle counting method based on predicted centers of each lane. Specifically, the centers of each lane are detected by using the accumulated movement of vehicles and its filtered responses. The number of vehicles, which pass through extracted centers, is counted by checking the closest trajectories of the corresponding vehicles. Various experimental results on road CCTV videos demonstrate that the proposed method is effective for vehicle counting.

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete

  • Behforouz, Babak;Memarzadeh, Parham;Eftekhar, Mohammadreza;Fathi, Farshid
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • There is a growing interest in the use of by-product materials such as ceramics as alternative materials in construction. The aim of this study is to investigate the mechanical properties and durability of sustainable concrete containing waste ceramic powder (WCP), and to predict the results using artificial neural network (ANN). In this order, different water to binder (W/B) ratios of 0.3, 0.4, and 0.5 were considered, and in each W/B ratio, a percentage of cement (between 5-50%) was replaced with WCP. Compressive and tensile strengths, water absorption, electrical resistivity and rapid chloride permeability (RCP) of the concrete specimens having WCP were evaluated by related experimental tests. The results showed that by replacing 20% of the cement by WCP, the concrete achieves compressive and tensile strengths, more than 95% of those of the control concrete, in the long term. This percentage increases with decreasing W/B ratio. In general, by increasing the percentage of WCP replacement, all durability parameters are significantly improved. In order to validate and suggest a suitable tool for predicting the characteristics of the concrete, ANN model along with various multivariate regression methods were applied. The comparison of the proposed ANN with the regression methods indicates good accuracy of the developed ANN in predicting the mechanical properties and durability of this type of concrete. According to the results, the accuracy of ANN model for estimating the durability parameters did not significantly follow the number of hidden nodes.

The Risk Rating System for Noise-induced Hearing Loss in Korean Manufacturing Sites Based on the 2009 Survey on Work Environments

  • Kim, Young-Sun;Cho, Youn-Ho;Kwon, Oh-Jun;Choi, Seong-Weon;Rhee, Kyung-Yong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.336-347
    • /
    • 2011
  • Objectives: In Korea, an average of 258 workers claim compensation for their noise-induced hearing loss (NIHL) on an annual basis. Indeed, hearing disorder ranks first in the number of diagnoses made by occupational medical check-ups. Against this backdrop, this study analyzed the impact of 19 types of noise-generating machines and equipment on the sound pressure levels in workplaces and NIHL occurrence based on a 2009 national survey on work environments. Methods: Through this analysis, a series of statistical models were built to determine posterior probabilities for each worksite with an aim to present risk ratings for noise levels at work. Results: It was found that air compressors and grinding machines came in first and second, respectively in the number of installed noise-generating machines and equipment. However, there was no direct relationship between workplace noise and NIHL among workers since noise-control equipment and protective gear had been in place. By building a logistic regression model and neural network, statistical models were set to identify the influence of the noise-generating machines and equipment on workplace noise levels and NIHL occurrence. Conclusion: This study offered NIHL prevention measures which are fit for the worksites in each risk grade.

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF (LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.