To improve the predictive capability of a nuclear thermal hydraulic safety analysis code by developing a better constitutive equation for individual phenomenon has been the general research direction until now. This paper proposes a new method to directly use complex experimental data obtained from integral effect test (IET) to improve constitutive models holistically and simultaneously. The method relies on the sensitivity of a simulation result of IET data to the multiple constitutive equations utilized during the simulation, and the sensitivity of individual model determines the direction of modification for the constitutive model. To develop a robust and generalized method, a clustering algorithm using an artificial neural network, sample space size determination using non-parametric statistics, and sampling method of Latin hypercube sampling are used in a combined manner. The value of the proposed methodology is demonstrated by applying the method to the ATLAS DSP-05 IET experiment. A sensitivity of each observation parameter to the constitutive models is analyzed. The new methodology suggested in the study can be used to improve the code prediction results of complex IET data by identifying the direction for constitutive equations to be modified.
본 논문은 심층 신경망을 이용한 화자 인증(Speaker Verification, SV) 시스템에서, 심층 신경망 내부에 존재하는 각 특징 지도(Feature Map)들의 분별력을 강화하기 위해 기존 특징 지도 스케일링(Feature Map Scaling, FMS) 기법을 확장한 α-FMS 기법을 제안한다. 기존의 FMS 기법은 특징 지도로부터 스케일 벡터를 구한 뒤, 이를 특징 지도에 더하거나 곱하거나 혹은 두 방식을 차례로 적용한다. 하지만 FMS 기법은 동일한 스케일 벡터를 덧셈과 곱셈 연산에 중복으로 사용할 뿐만 아니라, 스케일 벡터 자체도 sigmoid 비선형 활성 함수를 이용하여 계산되기 때문에 덧셈을 수행할 경우 그 값의 범위가 제한된다는 한계가 존재한다. 본 연구에서는 이러한 한계점을 극복하기 위해 별도의 α라는 학습 파라미터를 특징 지도에 원소 단위로 더한 뒤, 스케일 벡터를 곱하는 방식으로 α-FMS 기법을 설계하였다. 이 때, 제안한 α-FMS 기법은 스칼라 α를 학습하여 특징 지도의 모든 필터에 동일 값을 적용하는 방식과 벡터 α를 학습하여 특징 지도의 각 필터에 서로 다른 값을 적용하는 방식을 각각 적용 후 그 성능을 비교하였다. 두 방식의 α-FMS 모두 심층 심경망 내부의 잔차 연결이 적용된 각 블록 뒤에 적용하였다. 제안한 기법들의 유효성을 검증하기 위해 RawNet2 학습세트를 이용하여 학습시킨 뒤, VoxCeleb1 평가세트를 이용하여 성능을 평가한 결과, 각각 동일 오류율 2.47 %, 2.31 %를 확인하였다.
전 세계적으로 온라인 상거래 시장 규모가 성장함에 따라 국제 및 국내 기업의 상표권이 침해되는 사례가 빈번하게 발생하고 있다. 다양한 연구 및 보고서에 따르면, 해외 기업 또는 개인이 국내 기업의 상표권을 침해한 사례와, 국내 기업 간 발생하는 상표권 분쟁 사례가 증가하고 있는 것으로 나타나고 있으며, 특허청의 보고서에 따르면 기업의 규모가 작을수록 상표보호를 위한 사전 예방활동을 수행하지 않는다고 응답한 비율이 높은 것으로 나타났다. 이러한 문제는 선등록 상표에 대한 사전조사 또는 자사의 상표보호를 위해 소요되는 인력과 비용이 원인인 것으로 판단된다. 한편, 국내에서 선등록상표에 대한 사전조사를 위해 상용되는 서비스를 살펴보면 상표 이미지를 활용한 검색 서비스를 제공하고 있지 않은 상황이다. 이로 인해 국내 대다수의 기업은 자사의 상표 보호 및 선등록 상표에 대한 사전조사 수행 시 방대한 양의 선등록된 상표를 수작업으로 조사해야하는 문제가 발생한다. 따라서 본 연구에서는 기업의 상표권 보호 및 선등록 상표에 대한 사전조사 수행 시 투입되는 인력 및 비용절감과, 국내외에서 발생하고 있는 상표권 침해 문제를 해결하기 위해 합성곱 신경망 기법을 활용한 지능형 유사 상표 검색 모델을 개발하고자 한다. 지적 재산권 전문가가 선정한 테스트 데이터를 활용하여 지능형 유사 상표 검색 모델의 정확도를 측정한 결과 ResNet V1 101의 성능이 가장 높게 나타났다. 해당 결과를 통해 이미지 분류 알고리즘이 단순한 사물 인식 분야뿐만 아니라 이미지 검색 분야에서도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 상표 이미지 데이터를 활용했다는 측면에서 실제 산업 환경에서 활용성이 높을 것으로 사료된다.
자연환경에 대한 국민들의 관심 증가로 스마트폰과 같은 휴대용 기기를 이용한 수목 동정의 자동화에 대한 요구가 증가하고 있다. 최근 딥러닝 기술의 발전에 힘입어, 외국에서는 수목 인식 분야에의 적용이 활발하게 이루어지고 있다. 수목의 분류를 위해 꽃, 잎 등 다양한 형질들을 대상으로 연구가 진행되고 있지만, 접근성을 비롯한 여러 장점을 가진 수피의 경우 복잡도가 높고 자료가 부족하여 연구가 제한적이었다. 본 연구에서는 국내에서 흔히 관찰 가능한 수목 54종의 사진자료를 약 7,000 여장 수집 및 공개하였고, 이를 해외의 20 수종에 대한 BarkNet 1.0의 자료와 결합하여 학습에 충분한 수의 사진 수를 가지는 53종을 선정하고, 사진들을 7:3의 비율로 나누어 훈련과 평가에 활용하였다. 분류 모델의 경우, 딥러닝 기법의 일종인 합성곱 신경망을 활용하였는데, 가장 널리 쓰이는 VGGNet (Visual Geometry Group Network) 16층, 19층 모델 두 가지를 학습시키고 성능을 비교하였다. 또한 본 모형의 활용성 및 한계점을 확인하기 위하여 학습에 사용하지 않은 수종과 덩굴식물과 같은 방해 요소가 있는 사진들에 대한 모델의 정확도를 확인하였다. 학습 결과 VGG16과 VGG19는 각각 90.41%와 92.62%의 높은 정확도를 보였으며, 더 복잡도가 높은 모델인 VGG19가 조금 더 나은 성능을 보임을 확인하였다. 학습에 활용되지 않은 수목을 동정한 결과 80% 이상의 경우에서 같은 속 또는 같은 과에 속한 수종으로 예측하는 것으로 드러났다. 반면, 이끼, 만경식물, 옹이 등의 방해 요소가 존재할 경우 방해요소가 자치하는 비중에 따라 정확도가 떨어지는 것이 확인되어 실제 현장에서 이를 보완하기 위한 방법들을 제안하였다.
최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.
본 논문은 출입통제시스템이나 사용자인증이 필요한 통제시스템 등에 적용될 수 있는 신경 진동자(Neural Oscillators)를 이용한 실시간 얼굴검출 및 추적에 필요한 새로운 알고리즘을 제안한다. 신경 진동자(Neural Oscillators)는 생물학적 뉴런의 동작원리를 모방한 것으로서 뉴런의 활성과 비활성의 주기적인 반복동작 특성을 모델링 한 인공신경모델이다. 본 논문에서 제안한 시스템은 크게 두 단계의 처리과정을 가진다. 첫 번째 단계는 얼굴검출 과정인데, 우선 비용이 저렴한 Webcam을 이용하여 실시간 전달되는 RGB24bit 컬러 영상을 획득, LEGION(Locally Excitatory Globally Inhibitory) 알고리즘을 이용하여 분할과정을 거쳐 얼굴영역을 검출한다. 두 번째 단계는 검출된 얼굴영역에서 이웃뉴런들로부터 연결강도가 가장 큰 리더뉴런(Max Leader Neuron)을 찾아 얼굴을 추적하는 방법으로 스케일 문제해결 과 안정된 새로운 얼굴 추적 방법을 제안한다.
지정맥을 이용한 생체인식기술은 높은 보안성, 편리성과 정확성으로 많은 관심을 받고 있으며 최근 딥러닝 기술의 발달로 인해 더욱 인증에 대한 인식 오류율 및 정확도가 향상되었다. 하지만 학습 데이터는 일정한 순서나 방법이 아닌 실제 데이터의 부분 집합으로, 결과가 일정하지 않아 데이터양과 인공신경망의 복잡도를 고려해야 한다. 본 논문에서는 지정맥 인식기의 높은 정확도와 인증 시스템 성능 향상을 위해 Inception-ResNet-v2의 딥러닝 모델을 활용하였으며 DenseNet-201의 딥러닝 모델과 성능을 비교 분석하였다. 시뮬레이션은 전북대의 MMCBNU_6000과 직접 촬영한 지정맥 영상을 사용하고 지정맥 인증 시스템에 이미지를 가공하는 과정은 없으며 생체인증 척도인 EER을 추출하여 성능 결과를 확인한다.
본 연구에서 외래어종 퇴치를 위한 시스템 개발에 앞서 물 안의 어류 이미지를 CNN으로 학습하여 어종을 분류하는 알고리즘을 제안하고자 한다. CNN 학습을 위한 원데이터(raw data)는 각 어종에 대해 직접 촬영한 영상을 사용하였으며, 어종 분류성능을 높이기 위해 영상 이미지의 개수를 늘린 데이터세트 1과 최대한 자연환경과 가까운 영상 이미지를 구현한 데이터세트 2를 구성하여 학습 및 테스트 데이터로 사용하였다. 4가지 CNN의 분류성능은 데이터세트 1에 대해 99.97%, 데이터세트 2에 대해 99.5% 이상을 나타내었으며, 특히 데이터세트 2를 사용하여 학습한 CNNs이 자연환경과 유사한 어류 이미지에 대해서도 만족할 만한 성능을 가짐을 확인하였다. 그리고 4가지 CNN 중 AlexNet이 성능에서도 만족스러운 결과를 도출하였으며, 수행시간과 학습시간 역시 가장 짧아 외래어종 퇴치를 위한 시스템 개발에 가장 적합한 구조임을 확인하였다.
본 연구에서는 3차원 RGB-D Xtion2 카메라를 이용하여 보행자의 골격좌표를 추출한 결과를 바탕으로 동적인 특성(속도, 가속도)을 함께 고려하여 딥러닝 모델을 통해 사람을 인식하는 방법을 제안한다. 본 논문의 핵심목표는 RGB-D 카메라로 손쉽게 좌표를 추출하고 새롭게 생성한 동적인 특성을 기반으로 자체 고안한 1차원 합성곱 신경망 분류기 모델(1D-ConvNet)을 통해 자동으로 보행 패턴을 파악하는 것이다. 1D-ConvNet의 인식 정확도와 동적인 특성이 정확도에 미치는 영향을 알아보기 위한 실험을 수행하였다. 정확도는 F1 Score를 기준으로 측정하였고, 동적인 특성을 고려한 분류기 모델(JCSpeed)과 고려하지 않은 분류기 모델(JC)의 정확도 비교를 통해 영향력을 측정하였다. 그 결과 동적인 특성을 고려한 경우의 분류기 모델이 그렇지 않은 경우보다 F1 Score가 약 8% 높게 나타났다.
최근 이미지 분할(Image Segmentation)에 관련되어 스마트 공장 산업과 의료 분야 등에 접목하려는 연구가 다수 진행되고 있다. 특히 딥러닝 알고리즘을 사용한 이미지 분할 시스템들은 대용량의 데이터를 높은 정확도로 학습할 만큼 발전되었다. 자율주행 분야에서도 이미지 분할을 이용하기 위해선 대용량의 데이터들에 대한 충분한 학습량이 필요하며, 실시간으로 운전자의 데이터를 처리하는 스트리밍 환경은 고속도로, 어린이보호구역 등으로 안전운행에 대한 정확도가 중요하다. 따라서 본 논문에서는 다양한 도로환경에 적용할 수 있는 기존 FCN(Fully Convoulutional Network) 알고리즘을 강화한 DFCN 알고리즘을 제안하였으며, DFCN 알고리즘의 성능이 FCN 알고리즘과 비교하여 손실 값 측면에서 1.3% 개선하였음을 증명하였으며, 기존 U-Net 알고리즘에 DFCN 알고리즘을 적용하여 이미지 내의 주파수의 정보를 유지하여 더 좋은 결과치를 도출함으로써 결과적으로 자율주행 환경에서 DFCN 알고리즘이 FCN 알고리즘보다 성능이 향상되었다는 것을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.