• Title/Summary/Keyword: neural net

Search Result 767, Processing Time 0.031 seconds

An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method (ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰)

  • Kim, Sang-Woon;Shin, Seong-Hyo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.

Real-world noisy image denoising using deep residual U-Net structure (깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징)

  • Jang, Yeongil;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

A computer vision-based approach for behavior recognition of gestating sows fed different fiber levels during high ambient temperature

  • Kasani, Payam Hosseinzadeh;Oh, Seung Min;Choi, Yo Han;Ha, Sang Hun;Jun, Hyungmin;Park, Kyu hyun;Ko, Han Seo;Kim, Jo Eun;Choi, Jung Woo;Cho, Eun Seok;Kim, Jin Soo
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.367-379
    • /
    • 2021
  • The objectives of this study were to evaluate convolutional neural network models and computer vision techniques for the classification of swine posture with high accuracy and to use the derived result in the investigation of the effect of dietary fiber level on the behavioral characteristics of the pregnant sow under low and high ambient temperatures during the last stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for automatic swine posture classification were selected and compared using the swine posture image dataset that was constructed under real swine farm conditions. The neural network models showed excellent performance on previously unseen data (ability to generalize). The DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of the image dataset. The behavior of sows classified by the DenseNet121 feature extractor showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there was no change in sitting under HT conditions.

A Study on the Optimal Convolution Neural Network Backbone for Sinkhole Feature Extraction of GPR B-scan Grayscale Images (GPR B-scan 회색조 이미지의 싱크홀 특성추출 최적 컨볼루션 신경망 백본 연구)

  • Park, Younghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.385-396
    • /
    • 2024
  • To enhance the accuracy of sinkhole detection using GPR, this study derived a convolutional neural network that can optimally extract sinkhole characteristics from GPR B-scan grayscale images. The pre-trained convolutional neural network is evaluated to be more than twice as effective as the vanilla convolutional neural network. In pre-trained convolutional neural networks, fast feature extraction is found to cause less overfitting than feature extraction. It is analyzed that the top-1 verification accuracy and computation time are different depending on the type of architecture and simulation conditions. Among the pre-trained convolutional neural networks, InceptionV3 are evaluated as most robust for sinkhole detection in GPR B-scan grayscale images. When considering both top-1 verification accuracy and architecture efficiency index, VGG19 and VGG16 are analyzed to have high efficiency as the backbone for extracting sinkhole feature from GPR B-scan grayscale images. MobileNetV3-Large backbone is found to be suitable when mounted on GPR equipment to extract sinkhole feature in real time.

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

An Algorithm to Update a Codebook Using a Neural Net (신경회로망을 이용한 코드북의 순차적 갱신 알고리듬)

  • 정해묵;이주희;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1857-1866
    • /
    • 1989
  • In this paper, an algorithm to update a codebook using a neural network in consecutive images, is proposed. With the Kohonen's self-organizing feature map, we adopt the iterative technique to update a centroid of each cluster instead of the unsupervised learning technique. Because the performance of this neural model is comparable to that of the LBG algorithm, it is possible to update the codebooks of consecutive frames sequentially in TV and to realize the hardwadre on the real-time implementation basis.

  • PDF

Forecasting the Demand of Railroad Traffic using Neural Network (신경망을 이용한 철도 수요 예측)

  • Shin, Young-Geun;Jung, Won-Gyo;Park, Sang-Sung;Jang, Dong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1931-1936
    • /
    • 2007
  • Demand forecasting for railroad traffic is fairly important to establish future policy and plan. The future demand of railroad traffic can be predicted by analyzing the demand of air, marine and bus traffic which influence the demand of railroad traffic. In this study, forecasting the demand of railroad traffic is implemented through neural network using the demand of air, marine and bus traffic. Estimate accuracy of the demand of railroad traffic was shown about 84% through neural net model proposed.

  • PDF

Path control for a mobile robot using neural network (신경 회로 이론을 이용한 이동 로보트의 경로 제어에 관한 연구)

  • 신철균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.710-715
    • /
    • 1990
  • This paper presents a path control method for mobile robot using neural network and a systematic method for the kinematic and dynamic modelling of a mobile robot. The robot finds its path deviation by taking the signals of an optical array sensor and determined its moving behaviors using neural net control method. A robot can be taught behaviors by changing the given patterns, in this work, Back Propagation rule is used as a learning method.

  • PDF

KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph (KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델)

  • Lee, JaeYun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Unlike the existing Visual Question Answering(VQA) problems, the new Visual Commonsense Reasoning(VCR) problems require deep common sense reasoning for answering questions: recognizing specific relationship between two objects in the image, presenting the rationale of the answer. In this paper, we propose a novel deep neural network model, KG_VCR, for VCR problems. In addition to make use of visual relations and contextual information between objects extracted from input data (images, natural language questions, and response lists), the KG_VCR also utilizes commonsense knowledge embedding extracted from an external knowledge base called ConceptNet. Specifically the proposed model employs a Graph Convolutional Neural Network(GCN) module to obtain commonsense knowledge embedding from the retrieved ConceptNet knowledge graph. By conducting a series of experiments with the VCR benchmark dataset, we show that the proposed KG_VCR model outperforms both the state of the art(SOTA) VQA model and the R2C VCR model.