• Title/Summary/Keyword: neural learning scheme

Search Result 260, Processing Time 0.024 seconds

Efficiency Improvement of Inverter Fed Induction Machine System Using Neural Network (신경망을 이용한 유도전동기-인버터 시스템의 효율향상)

  • Ryu, Joon-Hyoung;Lee, Seung-Chul;Choy, Ick;Kim, K.B.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1984-1986
    • /
    • 1998
  • This paper presents an optimal efficiency control for the inverter fed induction machine system using neural network. The motor speed and the load torque vary the efficiency characteristics of an induction motor. The optimal slip frequency has nonlinearity varied by the load torque as well as the motor speed. The induction motor is driven using the inverter system and the indirect vector control method which input is slip frequency. The neural network for estimating the optimal slip frequency has two input layer(the motor speed and the load torque) and one output layer(the optimal slip frequency that minimize the input power). Learning algorithm of the neural network is the back-propagation. Using the equivalent circuit including the nonlinearity of the induction motor, the loss reduction is analyzed quantitatively. Experimental results are shown noticeable power savings by proposed scheme in high speed and light load conditions.

  • PDF

A Prediction Scheme for Power Apparatus using Artificial Neural Networks (인공신경망을 이용한 수전설비 고장 예측 방법)

  • Ki, Tae-Seok;Lee, Sang-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • Failure of the power apparatus causes many inconveniences and problems due to power outage in all places using power such as industry and home. The main causes of faults in the Power Apparatus are aging, natural disasters such as typhoons and earthquakes, and animals. At present, the long high temperature status is monitored only by the assumption that a fault occurs when the temperature of the power apparatus becomes higher. Therefore, it is difficult to cope with the failure of the power apparatus at the right time. In this paper, we propose a power apparatus monitoring system as an efficient countermeasure against general faults except for faults caused by sudden natural disasters. The proposed monitoring system monitors the power apparatus in real time by attaching a thermal sensor, collects the monitored data, and predicts the failure using the accumulated information through learning using the artificial neural network. Through the learning and experimentation of artificial neural network, it is shown that the proposed method is efficient.

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

Sensor Fusion System for Improving the Recognition Performance of 3D Object (3차원 물체의 인식 성능 향상을 위한 감각 융합 시스템)

  • Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.107-109
    • /
    • 2004
  • In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.

  • PDF

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

An Adaptive Scheduling Algorithm for Manufacturing Process with Non-stationary Rework Probabilities (비안정적인 Rework 확률이 존재하는 제조공정을 위한 적응형 스케줄링 알고리즘)

  • Shin, Hyun-Joon;Ru, Jae-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4174-4181
    • /
    • 2010
  • This paper presents an adaptive scheduling algorithm for manufacturing processes with non-stationary rework probabilities. The adaptive scheduling scheme named by hybrid Q-learning algorithm is proposed in this paper making use of the non-stationary rework probability and coupling with artificial neural networks. The proposed algorithm is measured by mean tardiness and the extensive computational results show that the presented algorithm gives very efficient schedules superior to the existing dispatching algorithms.

Effects of Hyper-parameters and Dataset on CNN Training

  • Nguyen, Huu Nhan;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • The purpose of training a convolutional neural network (CNN) is to obtain weight factors that give high classification accuracies. The initial values of hyper-parameters affect the training results, and it is important to train a CNN with a suitable hyper-parameter set of a learning rate, a batch size, the initialization of weight factors, and an optimizer. We investigate the effects of a single hyper-parameter while others are fixed in order to obtain a hyper-parameter set that gives higher classification accuracies and requires shorter training time using a proposed VGG-like CNN for training since the VGG is widely used. The CNN is trained for four datasets of CIFAR10, CIFAR100, GTSRB and DSDL-DB. The effects of the normalization and the data transformation for datasets are also investigated, and a training scheme using merged datasets is proposed.

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

Comparison of BP and SOM as a Classification of PD Source (부분방전원의 분류에 있어서 BP와 SOM의 비교)

  • 박성희;강성화;임기조
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.1006-1012
    • /
    • 2004
  • In this paper, neural networks is studied to apply as a PD source classification in XLPE power cable specimen. Two learning schemes are used to classification; BP(Back propagation algorithm), SOM(self organized map - kohonen network). As a PD source, using treeing discharge sources in the specimen, three defected models are made. And these data making use of a computer-aided discharge analyser, statistical and other discharge parameters is calculated to discrimination between different models of discharge sources. And a]so these distribution characteristics are applied to classify PD sources by two scheme of the neural networks. In conclusion, recognition efficiency of BP is superior to SOM.

Neuro-Control of Nonlinear Systems Using Genetic Algorithms (Genetic Algorithms를 이용한 비선형 시스템의 신경망 제어)

  • Cho, Hyeon-Seob;Min, Jin-Kyoung;Ryu, In-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.316-319
    • /
    • 2006
  • Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF