• 제목/요약/키워드: neural cell fate

검색결과 26건 처리시간 0.02초

Regulation of Neural Stem Cell Fate by Natural Products

  • Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.15-24
    • /
    • 2019
  • Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.

Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향 (The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification)

  • 송진수;진은정
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1346-1351
    • /
    • 2009
  • Neural crest는 신경계의 발생과정에서 생긴 특정화된 외배엽으로서 말초신경계(peripheral nervous system)의 모든 sensory cells과 peripheral cells, unipolar spinal ganglion cell, cranial sensory ganglia, peripheral nerve의 neurolemmal sheath cells, ganglia의 capsule cells, sympathetic ganglia, chromaffin cells, pigment cell 등의 자율신 경계의 대부분의 세포로 분화 한다. 최근pluripotetic neural crest cells의 운명이 이미 제한되어 있으며, 이러한 fate-restricted crest cells이 neural tube에서 emigration된다고 보고된바 있다. 또한 본 연구자는 Wnt와 Wnt의 antagonist가 neural crest cell의 specification이 일어나는 시기에 발현하여, neural crest cell의 segregation과 differentiation에 직접적으로 관여함을 밝혔다. 이를 보다 명확히 규명하기 위해, 본 연구에서는 neural tube에 Wnt-3a expressing cell의 grafting 혹은 dominant negative GSK construct의 electroporation을 통해 Wnt signaling을 modulation 하여 downstream mediator를 조사하였다. Wnt signaling의 stimulation은 neural crest cell의 melanoblast 로의 commitment를 유도하였으며, 이와 더불어 cadherin 7과 slug의 발현을 조절함을 확인하였다.

Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs

  • Wang, Xinxin;Ma, Shanshan;Meng, Nan;Yao, Ning;Zhang, Kun;Li, Qinghua;Zhang, Yanting;Xing, Qu;Han, Kang;Song, Jishi;Yang, Bo;Guan, Fangxia
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.418-425
    • /
    • 2016
  • Resveratrol (RES) plays a critical role in the fate of cells and longevity of animals via activation of the sirtuins1 (SIRT1) gene. In the present study, we intend to investigate whether RES could promote the self-renewal and neural-lineage differentiation in human umbilical cord derived MSCs (hUC-MSCs) in vitro at concentrations ranging from 0.1 to $10{\mu}M$, and whether it exerts the effects by modulating the SIRT1 signaling. Herein, we demonstrated that RES at the concentrations of 0.1, 1 and $2.5{\mu}M$ could promote cell viability and proliferation, mitigate senescence and induce expression of SIRT1 and Proliferating Cell Nuclear Antigen (PCNA) while inhibit the expression of p53 and p16. However, the effects were reversed by 5 and $10{\mu}M$ of RES. Furthermore, RES could promote neural differentiation in a dose-dependent manner as evidenced by morphological changes and expression of neural markers (Nestin, ${\beta}III-tubulin$ and NSE), as well as pro-neural transcription factors Neurogenin (Ngn)1, Ngn2 and Mash1. Taken together, RES exerts a dosage-dependent effect on the self-renewal and neural differentiation of hUC-MSCs via SIRT1 signaling. The current study provides a new strategy to regulate the fate of hUC-MSCs and suggests a more favorable in vitro cell culture conditions for hUCMSCs-based therapies for some intractable neurological disorders.

Expression of the Novel Basic Helix-Loop-Helix Gene dHAND in Neural Crest Derivatives and Extraembryonic Membranes during Mouse Development

  • S.I Yun;Kim, S.K;Kim, S.K.;K.T Chang;B.H Hyun;D.S Son;Kim, M.K;D.S Suh
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.53-54
    • /
    • 2001
  • Expression of HAND genes in sympathetic adrenal lineage suggests that HAND genes may regulate Mash-I independent neuronal genes. HAND genes are also expressed in other cell types, e.g. Cardiac cells, trophoblasts, and decidua, suggesting that HAND genes are not cell fate determination factors. It is unclear how HAND genes function specifically in different types of cells. Combinational actions of HANDs with other cell-lineage specific transcription factor may determine each cell fate and differentiation processes. Identifying the transcription target genes of HANDs and Mash-I will be important to elucidate the function of these bHLH factors in SNS factors in SNS development. (omitted)

  • PDF

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung;Lee, Hyun-Shik;Moody, Sally A.
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.705-712
    • /
    • 2014
  • The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Forskolin Effect on the Lineage Specification of Trunk Neural Crest Cells in vitro

  • Jin, Eun-Jung
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.69-74
    • /
    • 2002
  • Recent evidence has suggested that trunk neural crest cell generally assumed to have equivalent differentiation potentials, demonstrate differentiation bias along the anterior/posterior axis. In amphibian and fish, neural crest cells give rise to three chromatophore types, melanophores, xantho-phores, and iridophores. Each pigment cell type has distinct characteristics but there is speculation about the cellular plasticity that exists among them. Neural crest cells migrate along specific routes, ventromedially and dorsolaterally. Neural crest cells that travel dorsolaterally are the first cells to begin migration in the axolotl and are the major contributors to the visible pigment pattern. Many factors and mechanisms that are responsible for guiding migratory neural crest cells along potential pathways or determining their fate remain unknown. A single lineage of the crest, which becomes restricted to one of the three pigment cell types, gives us the opportunity to examine the existence of neural crest stem cell populations and cellular plasticity. Study presented here showed results from recent in vitro studies designed to identify parameters influencing differentiation events of individual neural crest-derived pigment cell lineages. Melanophore production from neural crest explants originating from different levels along the anterior/posterior axis of wild type-axolotl embryos were compared and demonstrate that the differentiation of melanophores is enhanced in subpopulation of neural crest treated with forskolin. Forskolin (an adenylate cyclase activator) increases intracellular CAMP concentration and eventually activates the protein kinase-A signaling pathway. Melanophore number, melanin content, and tyrosinase activity in explants taken from the anterior-most region of the crest increased significantly in response to forskolin treatment. This study suggests implications of region specific influences and developmental regulation in the development of pigment pattern.

Nox4-Mediated Cell Signaling Regulates Differentiation and Survival of Neural Crest Stem Cells

  • Lee, Ji-Eun;Cho, Kyu Eun;Lee, Kyung Eun;Kim, Jaesang;Bae, Yun Soo
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.907-911
    • /
    • 2014
  • The function of reactive oxygen species (ROS) as second messengers in cell differentiation has been demonstrated only for a limited number of cell types. Here, we used a well-established protocol for BMP2-induced neuronal differentiation of neural crest stem cells (NCSCs) to examine the function of BMP2-induced ROS during the process. We first show that BMP2 indeed induces ROS generation in NCSCs and that blocking ROS generation by pretreatment of cells with diphenyleneiodonium (DPI) as NADPH oxidase (Nox) inhibitor inhibits neuronal differentiation. Among the ROS-generating Nox isozymes, only Nox4 was expressed at a detectable level in NCSCs. Nox4 appears to be critical for survival of NCSCs at least in vitro as down-regulation by RNA interference led to apoptotic response from NCSCs. Interestingly, development of neural crest-derived peripheral neural structures in Nox4-/- mouse appears to be grossly normal, although Nox4-/- embryos were born at a sub-Mendelian ratio and showed delayed over-all development. Specifically, cranial and dorsal root ganglia, derived from NCSCs, were clearly present in Nox4-/- embryo at embryonic days (E) 9.5 and 10.5. These results suggest that Nox4-mediated ROS generation likely plays important role in fate determination and differentiation of NCSCs, but other Nox isozymes play redundant function during embryogenesis.

Directed Differentiation of Pluripotent Stem Cells by Transcription Factors

  • Oh, Yujeong;Jang, Jiwon
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.200-209
    • /
    • 2019
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used as promising tools for regenerative medicine, disease modeling, and drug screening. Traditional and common strategies for pluripotent stem cell (PSC) differentiation toward disease-relevant cell types depend on sequential treatment of signaling molecules identified based on knowledge of developmental biology. However, these strategies suffer from low purity, inefficiency, and time-consuming culture conditions. A growing body of recent research has shown efficient cell fate reprogramming by forced expression of single or multiple transcription factors. Here, we review transcription factor-directed differentiation methods of PSCs toward neural, muscle, liver, and pancreatic endocrine cells. Potential applications and limitations are also discussed in order to establish future directions of this technique for therapeutic purposes.

The Kleisin Subunits of Cohesin Are Involved in the Fate Determination of Embryonic Stem Cells

  • Koh, Young Eun;Choi, Eui-Hwan;Kim, Jung-Woong;Kim, Keun Pil
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.820-832
    • /
    • 2022
  • As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.