• Title/Summary/Keyword: neural Networks

Search Result 4,858, Processing Time 0.033 seconds

Deep Learning-based Technology Valuation and Variables Estimation (딥러닝 기반의 기술가치평가와 평가변수 추정)

  • Sung, Tae-Eung;Kim, Min-Seung;Lee, Chan-Ho;Choi, Ji-Hye;Jang, Yong-Ju;Lee, Jeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.48-58
    • /
    • 2021
  • For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.

A Study on Reducing Learning Time of Deep-Learning using Network Separation (망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.273-279
    • /
    • 2021
  • In this paper, we propose an algorithm that shortens the learning time by performing individual learning using partitioning the deep learning structure. The proposed algorithm consists of four processes: network classification origin setting process, feature vector extraction process, feature noise removal process, and class classification process. First, in the process of setting the network classification starting point, the division starting point of the network structure for effective feature vector extraction is set. Second, in the feature vector extraction process, feature vectors are extracted without additional learning using the weights previously learned. Third, in the feature noise removal process, the extracted feature vector is received and the output value of each class is learned to remove noise from the data. Fourth, in the class classification process, the noise-removed feature vector is input to the multi-layer perceptron structure, and the result is output and learned. To evaluate the performance of the proposed algorithm, we experimented with the Extended Yale B face database. As a result of the experiment, in the case of the time required for one-time learning, the proposed algorithm reduced 40.7% based on the existing algorithm. In addition, the number of learning up to the target recognition rate was shortened compared with the existing algorithm. Through the experimental results, it was confirmed that the one-time learning time and the total learning time were reduced and improved over the existing algorithm.

Machine Learning for Predicting Entrepreneurial Innovativeness (기계학습을 이용한 기업가적 혁신성 예측 모델에 관한 연구)

  • Chung, Doo Hee;Yun, Jin Seop;Yang, Sung Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.73-86
    • /
    • 2021
  • The primary purpose of this paper is to explore the advanced models that predict entrepreneurial innovativeness most accurately. For the first time in the field of entrepreneurship research, it presents a model that predicts entrepreneurial innovativeness based on machine learning corresponding to data scientific approaches. It uses 22,099 the Global Entrepreneurship Monitor (GEM) data from 62 countries to build predictive models. Based on the data set consisting of 27 explanatory variables, it builds predictive models that are traditional statistical methods such as multiple regression analysis and machine learning models such as regression tree, random forest, XG boost, and artificial neural networks. Then, it compares the performance of each model. It uses indicators such as root mean square error (RMSE), mean analysis error (MAE) and correlation to evaluate the performance of the model. The analysis of result is that all five machine learning models perform better than traditional methods, while the best predictive performance model was XG boost. In predicting it through XG boost, the variables with high contribution are entrepreneurial opportunities and cross-term variables of market expansion, which indicates that the type of entrepreneur who wants to acquire opportunities in new markets exhibits high innovativeness.

An Investigation on Digital Humanities Research Trend by Analyzing the Papers of Digital Humanities Conferences (디지털 인문학 연구 동향 분석 - Digital Humanities 학술대회 논문을 중심으로 -)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.393-413
    • /
    • 2021
  • Digital humanities, which creates new and innovative knowledge through the combination of digital information technology and humanities research problems, can be seen as a representative multidisciplinary field of study. To investigate the intellectual structure of the digital humanities field, a network analysis of authors and keywords co-word was performed on a total of 441 papers in the last two years (2019, 2020) at the Digital Humanities Conference. As the results of the author and keyword analysis show, we can find out the active activities of Europe, North America, and Japanese and Chinese authors in East Asia. Through the co-author network, 11 dis-connected sub-networks are identified, which can be seen as a result of closed co-authoring activities. Through keyword analysis, 16 sub-subject areas are identified, which are machine learning, pedagogy, metadata, topic modeling, stylometry, cultural heritage, network, digital archive, natural language processing, digital library, twitter, drama, big data, neural network, virtual reality, and ethics. This results imply that a diver variety of digital information technologies are playing a major role in the digital humanities. In addition, keywords with high frequency can be classified into humanities-based keywords, digital information technology-based keywords, and convergence keywords. The dynamics of the growth and development of digital humanities can represented in these combinations of keywords.

A Study on the Improvement of Source Code Static Analysis Using Machine Learning (기계학습을 이용한 소스코드 정적 분석 개선에 관한 연구)

  • Park, Yang-Hwan;Choi, Jin-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1131-1139
    • /
    • 2020
  • The static analysis of the source code is to find the remaining security weaknesses for a wide range of source codes. The static analysis tool is used to check the result, and the static analysis expert performs spying and false detection analysis on the result. In this process, the amount of analysis is large and the rate of false positives is high, so a lot of time and effort is required, and a method of efficient analysis is required. In addition, it is rare for experts to analyze only the source code of the line where the defect occurred when performing positive/false detection analysis. Depending on the type of defect, the surrounding source code is analyzed together and the final analysis result is delivered. In order to solve the difficulty of experts discriminating positive and false positives using these static analysis tools, this paper proposes a method of determining whether or not the security weakness found by the static analysis tools is a spy detection through artificial intelligence rather than an expert. In addition, the optimal size was confirmed through an experiment to see how the size of the training data (source code around the defects) used for such machine learning affects the performance. This result is expected to help the static analysis expert's job of classifying positive and false positives after static analysis.

EF Sensor-Based Hand Motion Detection and Automatic Frame Extraction (EF 센서기반 손동작 신호 감지 및 자동 프레임 추출)

  • Lee, Hummin;Jung, Sunil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.102-108
    • /
    • 2020
  • In this paper, we propose a real-time method of detecting hand motions and extracting the signal frame induced by EF(Electric Field) sensors. The signal induced by hand motion includes not only noises caused by various environmental sources as well as sensor's physical placement, but also different initial off-set conditions. Thus, it has been considered as a challenging problem to detect the motion signal and extract the motion frame automatically in real-time. In this study, we remove the PLN(Power Line Noise) using LPF with 10Hz cut-off and successively apply MA(Moving Average) filter to obtain clean and smooth input motion signals. To sense a hand motion, we use two thresholds(positive and negative thresholds) with offset value to detect a starting as well as an ending moment of the motion. Using this approach, we can achieve the correct motion detection rate over 98%. Once the final motion frame is determined, the motion signals are normalized to be used in next process of classification or recognition stage such as LSTN deep neural networks. Our experiment and analysis show that our proposed methods produce better than 98% performance in correct motion detection rate as well as in frame-matching rate.

Image-Based Automatic Bridge Component Classification Using Deep Learning (딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발)

  • Cho, Munwon;Lee, Jae Hyuk;Ryu, Young-Moo;Park, Jeongjun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.751-760
    • /
    • 2021
  • Most bridges in Korea are over 20 years old, and many problems linked to their deterioration are being reported. The current practice for bridge inspection mainly depends on expert evaluation, which can be subjective. Recent studies have introduced data-driven methods using building information modeling, which can be more efficient and objective, but these methods require manual procedures that consume time and money. To overcome this, this study developed an image-based automaticbridge component classification network to reduce the time and cost required for converting the visual information of bridges to a digital model. The proposed method comprises two convolutional neural networks. The first network estimates the type of the bridge based on the superstructure, and the second network classifies the bridge components. In avalidation test, the proposed system automatically classified the components of 461 bridge images with 96.6 % of accuracy. The proposed approach is expected to contribute toward current bridge maintenance practice.

Contactless User Identification System using Multi-channel Palm Images Facilitated by Triple Attention U-Net and CNN Classifier Ensemble Models

  • Kim, Inki;Kim, Beomjun;Woo, Sunghee;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • In this paper, we propose an ensemble model facilitated by multi-channel palm images with attention U-Net models and pretrained convolutional neural networks (CNNs) for establishing a contactless palm-based user identification system using conventional inexpensive camera sensors. Attention U-Net models are used to extract the areas of interest including hands (i.e., with fingers), palms (i.e., without fingers) and palm lines, which are combined to generate three channels being ped into the ensemble classifier. Then, the proposed palm information-based user identification system predicts the class using the classifier ensemble with three outperforming pre-trained CNN models. The proposed model demonstrates that the proposed model could achieve the classification accuracy, precision, recall, F1-score of 98.60%, 98.61%, 98.61%, 98.61% respectively, which indicate that the proposed model is effective even though we are using very cheap and inexpensive image sensors. We believe that in this COVID-19 pandemic circumstances, the proposed palm-based contactless user identification system can be an alternative, with high safety and reliability, compared with currently overwhelming contact-based systems.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.