• 제목/요약/키워드: network-selection

검색결과 1,798건 처리시간 0.03초

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

사례관리자들의 실천경험 연구 - 질적사례연구 방법 접근 - (A study on the experience of care managers - Approached Qualitative case study method -)

  • 김영숙;임효연;신소라
    • 사회복지연구
    • /
    • 제40권2호
    • /
    • pp.89-122
    • /
    • 2009
  • 본 연구는 사회복지실천현장의 사례관리자들의 직무세계를 분석하기 위해서 그들이 수행하는 사례관리 직무의 빈도, 가장 중요하다고 생각하는 직무군의 유형과 그 이유, 가장 어렵게 생각하는 직무의 유형과 그 이유를 질적사례연구방법을 통해 살펴보았다. 사례관리 직무범주는 데이컴 방법으로 도출했으며 도출된 9개의 직무영역을 사례관리 수행빈도, 중요도, 난이도로 분석하였다. 연구참여자는 사례관리를 주 업무로 하는 3년 이상의 사회복지사 10명이 세평적사례선택을 통해 선택되었으며 자료분석은 매몰된 분석(embedded analysis) 유형을 따라 이루어졌다. 연구결과에 대한 함의에서 연구자들은 본 연구 참여자들의 사례관리실천 경험을 "이용자 중심의 서비스와 제도적 압력 사이에서 긴장을 유지하며 균형점을 찾는 과정"으로 기술했다. 연구결과를 근거로 지역사회복지네트워크 구성, 사례관리자들의 직무권한을 보장하는 제도적 장치 마련, 균형과 상향평준화를 위한 표준매뉴얼의 개발을 제안했다.

Enhancing Recommender Systems by Fusing Diverse Information Sources through Data Transformation and Feature Selection

  • Thi-Linh Ho;Anh-Cuong Le;Dinh-Hong Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1413-1432
    • /
    • 2023
  • Recommender systems aim to recommend items to users by taking into account their probable interests. This study focuses on creating a model that utilizes multiple sources of information about users and items by employing a multimodality approach. The study addresses the task of how to gather information from different sources (modalities) and transform them into a uniform format, resulting in a multi-modal feature description for users and items. This work also aims to transform and represent the features extracted from different modalities so that the information is in a compatible format for integration and contains important, useful information for the prediction model. To achieve this goal, we propose a novel multi-modal recommendation model, which involves extracting latent features of users and items from a utility matrix using matrix factorization techniques. Various transformation techniques are utilized to extract features from other sources of information such as user reviews, item descriptions, and item categories. We also proposed the use of Principal Component Analysis (PCA) and Feature Selection techniques to reduce the data dimension and extract important features as well as remove noisy features to increase the accuracy of the model. We conducted several different experimental models based on different subsets of modalities on the MovieLens and Amazon sub-category datasets. According to the experimental results, the proposed model significantly enhances the accuracy of recommendations when compared to SVD, which is acknowledged as one of the most effective models for recommender systems. Specifically, the proposed model reduces the RMSE by a range of 4.8% to 21.43% and increases the Precision by a range of 2.07% to 26.49% for the Amazon datasets. Similarly, for the MovieLens dataset, the proposed model reduces the RMSE by 45.61% and increases the Precision by 14.06%. Additionally, the experimental results on both datasets demonstrate that combining information from multiple modalities in the proposed model leads to superior outcomes compared to relying on a single type of information.

휴리스틱 함수를 이용한 feature selection에 관한 연구 (Research about feature selection that use heuristic function)

  • 홍석미;정경숙;정태충
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.281-286
    • /
    • 2003
  • 실생활에서 해결하고자 하는 문제에 대해 수많은 feature들이 수집되어지나 그 feature들을 모두 문제 해결에 활용하는 것은 어렵다. 모든 feature들에 대한 정확한 자료의 수집이 어려우며 관련된 feature들을 모두 학습에 이용할 경우 복잡한 학습 모델이 생성되어지며 좋은 수행 결과도 얻을 수 없다. 또한 수집된 자료들 간에는 상호 관계나 계층적 관계가 존재하는데, 경험적 지식이나 통계적 방법을 이용하여 feature들간의 관계를 분석함으로써 feature의 수를 줄일 수 있다. 휴리스틱 기법은 반복적인 시행 착오와 경험을 통한 학습으로써 미래가 불확실하고 완전한 정보를 갖고 있지 못할 때, 인간의 사고 기능을 통하여 기억이나 경험을 살려, 스스로 해결방안을 모색하면서 점차로 해에 접근해 가는 방법이다. 전문가들은 경험에 의한 의견 수렴 과정을 거쳐 해당 문제 영역에 접근 가능하며, 이러한 특성을 학습에 사용될 feature의 수를 줄이는데 활용할 수 있다. 전문가들은 원시 자료들을 이용하여 새로운 feature들을 생성할 수 있다 새로이 산출된 feature들과 원시 데이터 내의 feature들을 혼합하여 학습 모델 생성에 이용한다. 본 논문에서는 휴리스틱 함수를 이용하여 학습에 사용될 feature의 수를 줄이고, 추출된 feature들을 신경망의 입력값으로 사용하는 기계 학습 모델을 제시한다. 모델의 성능 평가를 위해 프로야구 경기의 승패 예측 문제를 이용하였다. 실험 결과는 신경 회로망과 휴리스틱 모델을 단독으로 사용했을 때 보다 두 기법을 혼합한 모델이 신경 회로망의 복잡성을 감소시킬 뿐 아니라 분류(classification)의 정확성이 향상되었다.아니라 Hep G2 세포에서도 명백히 단백질의 발현을 관찰할 수 있었다. 또한, Hep G2와 COS세포 모두에서 endogenous RXR의 발현이 일어남을 확인하였고 RXR expression plasmid를 transfection시켰을 때 두 세포 모두에서 단백질의 발현이 현저하게 증가되었다. Constitutive Androstane Receptor (CAR)에 의한 CYP2B의 PBRU 활성효과를 다르게 분화된 세포에서 차이가 일어나는지를 비교하기 위하여 CAR에 의해 매개되는 PBRU의 transactivation효과를 Hep G2와 COS세포에서 조사하였다. Hep G2 세포에서는 transfection된 CAR의 발현에 의해 firefly luciferase 보고단백질의 활성이 약 12배 증가하였다. CAR 발현유전자를 15 ng transfection하였을 때 주어진 보고유전자의 양에 대하여 최대반응을 나타내었고 CYP2B1PBRU가 제거된 CYP2C1 promotor/firefly luciferase를 보고유전자로 사용하였을 때는 CAR에 의한 luciferase의 활성이 나타나지 않았다. Hep G2와는 달리, COS세포에서는 transfection된 CAR의 발현이 PBRU에 의한 firefly luciferase보고단백질의 발현에 영향을 주지 못하였다. 이러한 결과들은 분화된 세포의 종류에 따라서 constitutive androstane receptor의 CYP2BPBRU 활성효과가 다르게 나타날 수 있음을 제시할 뿐만 아니라, 간세포에서 Phenobarbital에 의한 PBRU의 활성유도에 영향을 주는 endogenous 매개 인자들 중 CAR와 RXR과는 다

hERG 이온채널 저해제에 대한 2D-QSAR 분석 (2D-QSAR analysis for hERG ion channel inhibitors)

  • 전을혜;박지현;정진희;이성광
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.533-543
    • /
    • 2011
  • hERG (human ether-a-go-go related gene) 이온채널은 심장 재분극의 중요 요소이며 이 채널의 저해제는 부정맥과 돌연사를 유발할 수 있다. 따라서, 신약개발과정에서 후보물질이 hERG 이온채널의 잠재적인 저해제일 경우에는 심장독성 부작용을 유발하므로, 이를 최소화하고자 많은 노력이 집중되고 있다. 본 연구는 HEK(인간 배아 신장)세포에서 얻은 202개 유기화합물의 $IC_{50}$ 데이터를 이용하여 2차원 구조-활성의 정량적 관계(2D-QSAR)방법으로 예측하는 모델을 개발하였다. hERG이온채널 저해제의 기계 학습방법으로는 다중선형회귀(Multiple Linear Regression), 서포트 벡터 머신(Support Vector Machine: SVM)방법과 인공신경망(Artificial Neural Network)방법이며, 교차검증을 적용한 모집단 기반 전진선택(forward selection)방법과 결합하여 각 학습모델에 적합한 최적의 표현자들을 결정하였다. 가장 우수한 방법은 14종의 표현자를 사용한 인공신경망방법($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583)이었고, 다중선형회귀방법을 통해서 hERG이온채널 저해물질의 구조적 특징과 수용체와의 상호작용을 설명할 수 있다. QSAR모델의 검증은 교차검증과 Y-scrambling test방법으로 수행하였다.

센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법 (A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks)

  • 선진호;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.280-291
    • /
    • 2009
  • 스카이라인 질의 처리는 센서 네트워크 응용에서 다차원 데이터를 효과적으로 활용할 수 있어서 그 역할이 중요하다. 센서 네트워크는 배터리 제약 사항을 가지고 있기 때문에, 센서 네트워크에서의 스카이라인에 관한 연구는 에너지 소비를 최소화 하는데 그 목표를 두고 있다. 이를 위해 기존연구에서 필터링 기법이 제안되었다. 하지만 기존 필터링 기법은 일회성 질의에 초점을 맞추고 있고, 상위 노드의 정보만을 활용하기 때문에 그 성능의 한계가 있다. 본 논문에서는 연속스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법을 제안한다. 하위노드에서 생성된 이전 스카이라인 정보를 각 센서노드에 저장하고, 필터링 투플 선정에 활용함으로써 불필요한 데이터 통신을 감소시킬 수 있다, 이와 더불어 추가 필터링 투플을 선택할 때 사용될 수 있는 SFT(Support Filtering Tuple)방법을 제안한다. 센서 데이터의 경우, 이전 센싱된 데이터와 현재 데이터 간의 시간 관계성(temporal correlation)의 특징을 갖고 있다. SFT 방법은 저장된 과거 데이터를 기반으로 현재데이터를 예측하여 추가 필터링 투플을 선정하여 필터링 성능을 향상시킨다. 실험 결과를 통해, 제안하는 방법들이 기존 방법에 비해 데이터 감소율과 총 통신량 측면에서 효율적임을 보여준다.

자질 선택 기법을 이용한 한국어 화행 결정 (Decision of the Korean Speech Act using Feature Selection Method)

  • 김경선;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.278-284
    • /
    • 2003
  • 화행(speech act)이란 화자의 발화를 통해 나타나는 화자의 의도를 가르키며 자연어로 된 발화를 이해하고 이에 대한 응답을 생성하기 위해 중요한 요소이다. 본 논문에서는 한국어 화행 결정의 성능을 높이기 위해 두 단계 방법을 제안한다. 첫 번째 단계는 형태소 분석결과만을 이용하여 추출된 문장자질과 이전 화행을 이용하여 추출된 문맥자질 중 정보량이 높은 자질을 선택하는 단계이다. 이 단계에서는 형태소 분석 시스템을 사용하여 전체 자질을 구성하고 문서분류 분야의 자질 선택에서 높은 성능을 보인 카이제곱 통계량을 이용하여 효과적인 자질 선택한다. 두 번째 단계는 선택된 자질과 신경망을 이용하여 화행을 분석하는 단계이다. 본 논문에서 제시한 방법은 형태소 분석 결과만을 이용하여 자동적으로 화행을 결정할 수 있는 가능성을 제시하였으며 효과적인 자질 선택을 통해 자질의 수를 감소시키고 정보량이 높은 자질을 사용하여 속도와 성능을 향상 시켰다 본 논문은 제안된 시스템을 실제 영역에서 수집되어 전사된 10,285개의 발화와 17개의 화행으로 이루어진 대화 코퍼스에 대해 실험하였다. 본 논문은 이 코퍼스에서 8,349개 발화를 학습 코퍼스로 사용하여, 실험 코퍼스의 1,936개 발화에 대해 1,709개에 대해 정확한 화행을 제시하여, 88.3%의 정확도를 보였다. 이는 자질 선택을 하지 않았을 때 보다 약 8%가 증가된 결과이다.

실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법 (A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks)

  • 이상환
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.421-426
    • /
    • 2010
  • 무선 메쉬 네트워크는 쉬운 설치와 향상된 커버리지로 인해 많은 관심과 연구가 진행되고 있다. 예를 들면 메쉬 네트워크에서 throughput을 향상시키는 라우팅 프로토콜에 관한 연구나, 메쉬 링크의 품질을 측정하는 방법 등 다양하다. 하지만 이러한 연구들 중 대부분은 메쉬 라우터의 위치가 고정되어 있다고 가정한다. 하지만 실내 메쉬 네트워크의 경우 관리자가 메쉬 네트워크를 독점적으로 관리하기 때문에 설치 시에 메쉬 라우터를 설치할 위치를 마음대로 결정할 수 있다. 따라서 처음부터 메쉬 네트워크의 성능을 고려하여 메쉬 라우터를 설치하는 것은 성능향상에 필수적이다. 이 논문에서는 유전자 기반 최적화 알고리즘을 바탕으로 메쉬 네트워크의 특성 (간섭, 패킷 전달 토폴로지 등)을 고려한 메쉬 라우터 위치선정 기법을 제시한다. 기존에 메쉬 네트워크는 아니지만 다양한 무선 내트워크에서 기지국이나 AP등을 설치하는 문제가 연구되었고, 메쉬 네트워크의 고정된 메쉬 라우터 집합에서 게이트웨이를 선택하는 문제등이 연구되었지만, 메쉬 라우터의 위치를 선택하는데 있어서, 메쉬 라우터들의 위치나 메쉬 라우터 상에서의 패킷 전송 토폴로지에 의한 간섭을 고려한 연구는 없었다. 다양한 시뮬레이션을 통해 이 논문에서 제시된 기법이 랜덤 선택 기법에 비해 30-40%의 향상을 달성하였음을 보였다.

P2P 통신 병용 DASH 시스템의 피어 부하 분산 방안 연구 (A Peer Load Balancing Method for P2P-assisted DASH Systems)

  • 서주호;김용한
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.94-104
    • /
    • 2020
  • 현재 유무선 인터넷을 통한 미디어 소비는 대부분 ISO/IEC MPEG(Moving Picture Experts Group)에 의해 표준화된 미디어 스트리밍 방식인 DASH(Dynamic Adaptive Streaming over HTTP) 또는 이와 유사한 형태의 적응형 미디어 스트리밍(adaptive media streaming) 기술에 의해 시행되고 있다. 이들은 모두 ISP(Internet Service Provider)가 웹서비스를 원활하게 제공하기 위해 충분히 설치할 수밖에 없는 HTTP 캐시(cache)에 크게 의존한다. 결과적으로 미디어 스트리밍 사용자 증가에 따라 CDN(Contents Delivery Network) 사업자의 서버 증설 부담 대신 ISP의 HTTP 캐시 증설 부담이 커지게 되었다. 이로 인해, ISP들은 이러한 HTTP 증설 비용을 보전하기 위해 CDN 사업자에게 미디어 트래픽 비용을 부과하게 되었다. 최근 이러한 비용을 줄이고자 P2P(Peer-to-Peer) 통신을 함께 사용하는(P2P-assisted) DASH 방식이 제안되었다. 또한 이러한 P2P 통신 병용 DASH 시스템의 효율을 극대화하여 CDN 사업자의 비용을 최대한 절감시키는 피어 선택 알고리듬도 연구되었다. 그러나 이 알고리듬은 선택된 피어에게 부담을 집중시키는 경향이 있다. 본 논문에서는 피어의 부담을 여러 피어들에게 분산시키면서도 CDN 사업자의 비용 절감 수준을 적절하게 유지하는 새로운 피어 선택 알고리듬을 제안하고, 이를 WebRTC(Web Real-Time Communication) 표준 API를 활용한 웹기반 스트리밍 시스템에 구현한 후, 실험을 통해 제안한 알고리듬의 효용성을 검증하였다.

IP 네트워크에서 QoS-Aware Energy Saving(QAES)을 위한 Energy Profile 기반 OSPF 라우팅 방식 및 특성 (A OSPF Routing Scheme based on Energy Profiles and Its Characteristics for QoS-Aware Energy Saving(QAES) in IP Core Networks)

  • 서유식;한치문
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.9-21
    • /
    • 2016
  • IP 네트워크에서 에너지 소모를 줄이기 위해 다양한 방법이 연구 되어 왔다. 본 논문에서는 다양한 에너지 프로파일을 갖는 IP 네트워크에서 2단계 라우팅 방식을 제시하고, 그 특성을 분석한다. 단계1의 라우팅 방식에서는 에너지 절약을 위해 기존 코스트 외에 에너지 코스트를 고려한 OSPF 라우팅이고, 단계2에서는 가능한 많은 코아 노드를 sleep 상태로 만든 후, sleep 노드로 영향을 받는 경로만 재 라우팅 하는 방식을 적용한다. 이때 단계2에서 에너지 절약 특성과 네트워크 레벨의 QoS 보장을 위한 방법으로, 재 라우팅 시 허용 가능한 증가 홉 수와 링크 및 노드의 이용률을 제한함으로써 에너지 효율 개선 및 네트워크 레벨의 지연 특성을 동시에 만족시킬 수 있다는 것을 확인한다. 또 sleep 모드로 둘 코아 노드를 선정하는 방법에 따라 에너지 절약 효율 및 지연 특성이 다르며, MP (minimum_path)에 기초하여 sleep 상태로 만들 코아 노드를 선정하는 방식이 우수함을 나타낸다.