• Title/Summary/Keyword: network time-delay

Search Result 1,471, Processing Time 0.037 seconds

A Daily Maximum Load Forecasting System Using Chaotic Time Series (Chaos를 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.578-580
    • /
    • 1995
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time, For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor font mentioned above. The one day ahead forecast errors are about 1.4% of absolute percentage average error.

  • PDF

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

A Development of DCS Binding Delay Analysis System based on PC/Ethernet and Realtime Database

  • Gwak, Kwi-Yil;Lee, Sung-Woo;Lim, Yong-Hun;Lee, Beom-Seok;Hyun, Duck-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1571-1576
    • /
    • 2005
  • DCS has many processing components and various communication elements. And its communication delay characteristic is affected diverse operating situation and context. Especially, binding signal which traversed from one control-node to another control-node undergo all sort of delay conditions. So its delay value has large deviation with the lapse of time, and the measurement of delay statistics during long time is very difficult by using general oscilloscope or other normal instruments. This thesis introduces the design and implementation of PC-based BDAS(Binding Delay Analysis System) System developed to overcomes these hardships. The system has signal-generator, IO-card, data-acquisition module, delay-calculation and analyzer module, those are implemented on industrial standard PC/Ethernet hardware and Windows/Linux platforms. This system can detect accurate whole-system-wide delay time including io, control processing and network delay, in the resolution of msec unit, and can analyze each channel's delay-historic data which is maintained by realtime database. So, this system has strong points of open system architecture, for example, user-friendly environment, low cost, high compatibility, simplicity of maintenance and high extension ability. Of all things, the measuring capability of long-time delay-statistics obtained through historic-DB make the system more valuable and useful, which function is essential to analyze accurate delay performance of DCS system. Using this system, the verification of delay performance of DCS for nuclear power plants is succeeded in KNICS(Korea Nuclear Instrumentation & Control System) projects

  • PDF

Anti-Jamming and Time Delay Performance Analysis of Future SATURN Upgraded Military Aerial Communication Tactical Systems

  • Yang, Taeho;Lee, Kwangyull;Han, Chulhee;An, Kyeongsoo;Jang, Indong;Ahn, Seungbeom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3029-3042
    • /
    • 2022
  • For over half a century, the United States (US) and its coalition military aircrafts have been using Ultra High Frequency (UHF) band analog modulation (AM) radios in ground-to-air communication and short-range air-to-air communications. Evolving from this, since 2007, the US military and the North Atlantic Treaty Organization (NATO) adopted HAVE QUICK to be used by almost all aircrafts, because it had been revealed that intercepting and jamming of former aircraft communication signals was possible, which placed a serious threat to defense systems. The second-generation Anti-jam Tactical UHF Radio for NATO (SATURN) was developed to replace HAVE QUICK systems by 2023. The NATO Standardization Agreement (STANAG) 4372 is a classified document that defines the SATURN technical and operational specifications. In preparation of this future upgrade to SATURN systems, in this paper, the SATURN technical and operational specifications are reviewed, and the network synchronization, frequency hopping, and communication setup parameters that are controlled by the Network (NET) Time, Time Of Day (TOD), Word Of Day (WOD), and Multiple Word of Day (MWOD) are described in addition to SATURN Edition 3 (ED3) and future Edition 4 (ED4) basic features. In addition, an anti-jamming performance analysis (in reference to partial band jamming and pulse jamming) and the time delay queueing model analysis are conducted based on a SATURN transmitter and receiver assumed model.

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.

Control of Real-Time Systems with Random Time-Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.348-353
    • /
    • 2003
  • This paper considers the optimal control problem in real-time control systems with random time-delays. It proposes an algorithm which uses the linear quadratic (LQ) control method and a dedicated technique to compensate for the time-delay effects. Since it is assumed that the time-delays are unknown but the probability distribution of the delays are known a priori, the algorithm considers the mean value of the time-delays as a nominal value for random delay compensation. An example is given to show the performance of the proposed algorithm, where an inverted pendulum system is controlled over a controller-area network (CAN). Simulation results show that the proposed algorithm provides good performance results. It is shown that our algorithm is comparable to existing algorithms in both computation cost and performance.

  • PDF

Efficient DBA Algorithm for Supporting CBR Service on EPON with Traffic Burstiness (트래픽이 급증하는 EPON 환경에서 고정비트율 서비스를 효율적으로 지원하는 DBA 알고리즘)

  • Lee, Jin-Hee;Lee, Tae-Jin;Chung, Min-Young;Lee, You-Ho;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.61-68
    • /
    • 2008
  • Ethernet passive optical network (EPON) is the next-generation technology mitigating the bottleneck between high-capacity local area networks (LANs) and a backbone network. The bottleneck is aggrevated depending on burstiness and long range dependence (LRD) of traffic characteristics as well as amount of outgoing traffic from the high-capacity LANs. The proposed scheme decreases average packet delay for data upstreaming by considering such traffic characteristics to dynamically allocate bandwidth to multiple optical network units (ONUs). In addition, it can appropriately support delay-sensitive traffic such as constant bit ratio (CBR) traffic by making maximum cycle time fix regardless of the number of ONUs. The comprehensive simulation results indicate that the proposed scheme acheives up to 77% and 82% lower than previous schemes in terms of average packet delay and average queue size while it limits the maximum cycle time to twice of the basic cycle time.

  • PDF

Algorithm for Reducing the Effect of Network Delay of Sensor Data in Network-Based AC Motor Drives

  • Chun, Tae-Won;Ahn, Jung-Ryol;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2011
  • Network-based controls for ac motor drive systems are becoming increasingly important. In this paper, an ac motor control system is implemented by a motor control module and three sensor modules such as a voltage sensor module, a current sensor module, and an encoder module. There will inevitably be network time delays from the sensor modules to the motor control system, which often degrades and even destabilizes the motor drive system. As a result, it becomes very difficult to estimate the network delayed ac sensor data. An algorithm to reduce the effects of network time delays on sensor data is proposed, using both a synchronization signal and a simple method for estimating the sensor data. The algorithm is applied to a vector controlled induction motor drive system, and the performance of the proposed algorithm is verified with experiments.

The Estimation of Road Delay Factor using Urban Network Map and Real-Time Traffic Information (도로망도와 실시간 교통정보를 이용한 도로 지연계수 산정)

  • Jeon, Jeongbae;Kim, Solhee;Kwon, Sungmoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • This study estimated the delay factor, which is the ratio of travel time at the speed limit and travel time at the actual speed using real-time traffic information in Seoul. The actual travel speed on the road was lower than the maximum speed of the road and the travel speed was the slowest during the rush hour. As a result of accessibility analysis based on travel speed during the rush hour, the travel time at the actual speed was 37.49 minutes on average. However, the travel time at the speed limit was 15.70 minutes on average. This result indicated that the travel time at the actual speed is 2.4 times longer than that at the speed limit. In addition, this study proposedly defined the delay factor as the ratio of accessibility by the speed limit and accessibility to actual travel speed. As a result of delay factor analysis, the delay factor of Seoul was 2.44. The results by the administrative district showed that the delay factor in the north part areas of the Han River is higher than her south part areas. Analysis results after applying the relationship between road density and traffic volume showed that as the traffic volume with road density increased, the delay factor decreased. These results indicated that it could not be said that heavy traffic caused longer travel time. Therefore, follow-up research is needed based on more detailed information such as road system shape, road width, and signal system for finding the exact cause of increased travel time.

Ethernet with Virtual Polling Algorithm for real-Time Industrial Communication Network (실시간 산업용 네트워크를 위한 가상 폴링 기반 이더넷 구현)

  • Kim, T. J.;Lee, K. C;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.602-605
    • /
    • 2001
  • This paper focus on a method to use Ethernet Network for Industrial Communication Network. Ethernet use the CSMA/CD MAC(Medium Access Control) Protocol at the Data-Link Layer, Which isn't suit for Industrial Communication Network requiring Real-Time Communication, periodic data processing, critical data processing characteristics. In this paper we proposed the Virtual Polling Algorithm at the Application Layer will be solution of using the Ethernet Network for the Industrial Communication Network, Proposed Algorithm terminate the Collision in the network thus Delay Time is reduced and Real-Time Communication will be implemented.

  • PDF