• Title/Summary/Keyword: network threat detection

Search Result 128, Processing Time 0.028 seconds

A Study on the Direction of the Formulation of "Safe Country" Laws and Regulations due to the Development of Information Technology (정보사회에 있어서 '안전국가' 법규의 정립방향에 관한 소고)

  • Kim, Hyun-Kyung
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.151-163
    • /
    • 2013
  • It is no doubt that information technology is the key factor of national safety. Information technology is positively useful for national security such as crime prevention and detection, criminal investigation, disaster management, and national defense. However, it might be a threat to the security as we saw in the examples such as '3.4 DDoS attacks' and 'Nong-hyup Computer Network Failure.' Although the effect that information technology makes upon the national security is immense, the current legal system does not reflect these changes well. National security should be kept during 'prevention-response-recovery' process regardless it is in the online on offline. In addition, public administration for national security should be based on laws. However, the current legal system is lack of legislative basis on cyber and physical disaster, and the laws on the response to disaster might cause confusing. Therefore, this study examines the limitation of the current legal system on national security, and suggests directions for the development of the system based on the new establishment of the legal concept for 'national security'.

Improving Probability of Precipitation of Meso-scale NWP Using Precipitable Water and Artificial Neural Network (가강수량과 인공신경망을 이용한 중규모수치예보의 강수확률예측 개선기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1027-1031
    • /
    • 2008
  • 본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.

  • PDF

Importance-Performance Analysis (IPA) of Cyber Security Management: Focused on ECDIS User Experience

  • Park, Sangwon;Chang, Yeeun;Park, Youngsoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • The mandatory installation of the ECDIS (Electronic Chart Display and Information System) became an important navigational equipment for navigation officer. In addition, ECDIS is a key component of the ship's digitalization in conjunction with various navigational equipment. Meanwhile, cyber-attacks emerge as a new threat along with digitalization. Damage caused by cyber-attacks is also reported in the shipping sector, and IMO recommends that cybersecurity guidelines be developed and included in International Security Management (ISM). This study analyzed the cybersecurity hazards of ECDIS, where various navigational equipment are connected. To this end, Importance-Performance Analysis (IPA) was conducted on navigation officer using ECDIS. As a result, the development of technologies for cyber-attack detection and prevention should be priority. In addition, policies related to 'Hardware and Software upgrade', 'network access control', and 'data backup and recovery' were analyzed as contents to be maintained. This paper is significant in deriving risk factors from the perspective of ECDIS users and analyzing their priorities, and it is necessary to analyze various cyber-attacks that may occur on ships in the future.

Determination Method of TTL for Improving Energy Efficiency of Wormhole Attack Defense Mechanism in WSN (무선 센서 네트워크에서 웜홀 공격 방어기법의 에너지 효율향상을 위한 TTL 결정 기법)

  • Lee, Sun-Ho;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.149-155
    • /
    • 2009
  • Attacks in wireless sensor networks (WSN), are similar to the attacks in ad-hoc networks because there are deployed on a wireless environment. However existing security mechanism cannot apply to WSN, because it has limited resource and hostile environment. One of the typical attack in WSN is setting up wrong route that using wormhole. To overcome this threat, Ji-Hoon Yun et al. proposed WODEM (WOrmhole attack DEfense Mechanism) which can detect and counter with wormhole. In this scheme, it can detect and counter with wormhole attacks by comparing hop count and initial TTL (Time To Live) which is pre-defined. The selection of a initial TTL is important since it can provide a tradeoff between detection ability ratio and energy consumption. In this paper, we proposed a fuzzy rule-based system for TTL determination that can conserve energy, while it provides sufficient detection ratio in wormhole attack.

Design and Implementation of a Web Application Firewall with Multi-layered Web Filter (다중 계층 웹 필터를 사용하는 웹 애플리케이션 방화벽의 설계 및 구현)

  • Jang, Sung-Min;Won, Yoo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.157-167
    • /
    • 2009
  • Recently, the leakage of confidential information and personal information is taking place on the Internet more frequently than ever before. Most of such online security incidents are caused by attacks on vulnerabilities in web applications developed carelessly. It is impossible to detect an attack on a web application with existing firewalls and intrusion detection systems. Besides, the signature-based detection has a limited capability in detecting new threats. Therefore, many researches concerning the method to detect attacks on web applications are employing anomaly-based detection methods that use the web traffic analysis. Much research about anomaly-based detection through the normal web traffic analysis focus on three problems - the method to accurately analyze given web traffic, system performance needed for inspecting application payload of the packet required to detect attack on application layer and the maintenance and costs of lots of network security devices newly installed. The UTM(Unified Threat Management) system, a suggested solution for the problem, had a goal of resolving all of security problems at a time, but is not being widely used due to its low efficiency and high costs. Besides, the web filter that performs one of the functions of the UTM system, can not adequately detect a variety of recent sophisticated attacks on web applications. In order to resolve such problems, studies are being carried out on the web application firewall to introduce a new network security system. As such studies focus on speeding up packet processing by depending on high-priced hardware, the costs to deploy a web application firewall are rising. In addition, the current anomaly-based detection technologies that do not take into account the characteristics of the web application is causing lots of false positives and false negatives. In order to reduce false positives and false negatives, this study suggested a realtime anomaly detection method based on the analysis of the length of parameter value contained in the web client's request. In addition, it designed and suggested a WAF(Web Application Firewall) that can be applied to a low-priced system or legacy system to process application data without the help of an exclusive hardware. Furthermore, it suggested a method to resolve sluggish performance attributed to copying packets into application area for application data processing, Consequently, this study provide to deploy an effective web application firewall at a low cost at the moment when the deployment of an additional security system was considered burdened due to lots of network security systems currently used.

A Study on the Abnormal Behavior Detection Model through Data Transfer Data Analysis (자료 전송 데이터 분석을 통한 이상 행위 탐지 모델의 관한 연구)

  • Son, In Jae;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.647-656
    • /
    • 2020
  • Recently, there has been an increasing number of cases in which important data (personal information, technology, etc.) of national and public institutions are leaked to the outside world. Surveys show that the largest cause of such leakage accidents is "insiders." Insiders of organization with the most authority can cause more damage than technology leaks caused by external attacks due to the organization. This is due to the characteristics of insiders who have relatively easy access to the organization's major assets. This study aims to present an optimized property selection model for detecting such abnormalities through supervised learning algorithms among machine learning techniques using actual data such as CrossNet data transfer system transmission log, e-mail transmission log, and personnel information, which safely transmits data between separate areas (security area and non-security area) of the business network and the Internet network.

Multi-Level Emulation for Malware Distribution Networks Analysis (악성코드 유포 네트워크 분석을 위한 멀티레벨 에뮬레이션)

  • Choi, Sang-Yong;Kang, Ik-Seon;Kim, Dae-Hyeok;Noh, Bong-Nam;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1121-1129
    • /
    • 2013
  • Recent malware distribution causes severe and nation-wide problems such as 3 20 cyber attack in Korea. In particular, Drive-by download attack, which is one of attack types to distribute malware through the web, becomes the most prevalent and serious threat. To prevent Drive-by download attacks, it is necessary to analyze MDN(Malware Distribution Networks) of Drive-by download attacks. Effective analysis of MDN requires a detection of obfuscated and/or encapsulated JavaScript in a web page. In this paper, we propose the scheme called Multi-level emulation to analyze the process of malware distribution. The proposed scheme analyzes web links used for malware distribution to support the efficient analysis of MDN.

A pioneer scheme in the detection and defense of DrDoS attack involving spoofed flooding packets

  • Kavisankar, L.;Chellappan, C.;Sivasankar, P.;Karthi, Ashwin;Srinivas, Avireddy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1726-1743
    • /
    • 2014
  • DDoS (Distributed Denial of Service) has been a continuous threat to the cyber world with the growth in cyber technology. This technical evolution has given rise to a number of ultra-sophisticated ways for the attackers to perform their DDoS attack. In general, the attackers who generate the denial of service, use the vulnerabilities of the TCP. Some of the vulnerabilities like SYN (synchronization) flooding, and IP spoofing are used by the attacker to create these Distributed Reflected Denial of Service (DrDoS) attacks. An attacker, with the assistance of IP spoofing creates a number of attack packets, which reflects the flooded packets to an attacker's intended victim system, known as the primary target. The proposed scheme, Efficient Spoofed Flooding Defense (ESFD) provides two level checks which, consist of probing and non-repudiation, before allocating a service to the clients. The probing is used to determine the availability of the requested client. Non-repudiation is taken care of by the timestamp enabled in the packet, which is our major contribution. The real time experimental results showed the efficiency of our proposed ESFD scheme, by increasing the performance of the CPU up to 40%, the memory up to 52% and the network bandwidth up to 67%. This proves the fact that the proposed ESFD scheme is fast and efficient, negating the impact on the network, victim and primary target.

Detection of Damaged Pine Tree by the Pine Wilt Disease Using UAV Image (무인항공기(UAV) 영상을 이용한 소나무재선충병 의심목 탐지)

  • Lee, Seulki;Park, Sung-jae;Baek, Gyeongmin;Kim, Hanbyeol;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.359-373
    • /
    • 2019
  • Bursaphelenchus xylophilus(Pine wilt disease) is a serious threat to the pine forest in Korea. However, dead wood observation by Pine wilt disease is based on field survey. Therefore, it is difficult to observe large-scale forests due to physical and economic problems. In this paper, high resolution images were obtained using the unmanned aerial vehicle (UAV) in the area where the pine wilt disease recurred. The damaged tree due to pine wilt disease was detected using Artificial Neural Network (ANN), Support Vector Machine (SVM) supervision classification technique. Also, the accuracy of supervised classification results was calculated. After conducting supervised classification on accessible forests, the reliability of the accuracy was verified by comparing the results of field surveys.

A Study on the Efficacy of Edge-Based Adversarial Example Detection Model: Across Various Adversarial Algorithms

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • Deep learning models show excellent performance in tasks such as image classification and object detection in the field of computer vision, and are used in various ways in actual industrial sites. Recently, research on improving robustness has been actively conducted, along with pointing out that this deep learning model is vulnerable to hostile examples. A hostile example is an image in which small noise is added to induce misclassification, and can pose a significant threat when applying a deep learning model to a real environment. In this paper, we tried to confirm the robustness of the edge-learning classification model and the performance of the adversarial example detection model using it for adversarial examples of various algorithms. As a result of robustness experiments, the basic classification model showed about 17% accuracy for the FGSM algorithm, while the edge-learning models maintained accuracy in the 60-70% range, and the basic classification model showed accuracy in the 0-1% range for the PGD/DeepFool/CW algorithm, while the edge-learning models maintained accuracy in 80-90%. As a result of the adversarial example detection experiment, a high detection rate of 91-95% was confirmed for all algorithms of FGSM/PGD/DeepFool/CW. By presenting the possibility of defending against various hostile algorithms through this study, it is expected to improve the safety and reliability of deep learning models in various industries using computer vision.