International Journal of Computer Science & Network Security
/
제24권4호
/
pp.179-191
/
2024
With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.
인터넷 웜, 컴퓨터 바이러스 등 네트워크에 위협적인 악성트래픽이 증가하고 있다. 특히 최근에는 지능형 지속 위협 공격 (APT: Advanced Persistent Threat), 랜섬웨어 등 수법이 점차 고도화되고 그 복잡성(Complexity)이 증대되고 있다. 지난 몇 년간 침입탐지시스템(IDS: Intrusion Detection System)은 네트워크 보안 솔루션으로서 중추적 역할을 수행해왔다. 침입탐지시스템의 효과적 활용을 위해서는 탐지규칙(Rule)을 적절히 작성하여야 한다. 탐지규칙은 탐지하고자 하는 악성트래픽의 핵심 시그니처를 포함하며, 시그니처를 포함한 악성트래픽이 침입탐지시스템을 통과할 경우 해당 악성트래픽을 탐지하도록 한다. 그러나 악성트래픽의 핵심 시그니처를 찾는 일은 쉽지 않다. 먼저 악성트래픽에 대한 분석이 선행되어야 하며, 분석결과를 바탕으로 해당 악성트래픽에서만 발견되는 비트패턴을 시그니처로 사용해야 한다. 만약 정상 트래픽에서 흔히 발견되는 비트패턴을 시그니처로 사용하면 수많은 오탐(誤探)을 발생시키게 될 것이다. 본고에서는 네트워크 트래픽을 분석하여 핵심 시그니처를 추출하는 기법을 제안한다. 제안 기법은 LDA(Latent Dirichlet Allocation) 알고리즘을 활용하여, 어떠한 네트워크 트래픽에 포함된 시그니처가 해당 트래픽을 얼마나 대표하는지를 정량화한다. 대표성이 높은 시그니처는 해당 네트워크 트래픽을 탐지할 수 있는 침입탐지시스템의 탐지규칙으로 활용될 수 있다.
In this paper, we developed a framework to detect and predict insider information leakage by collecting and restoring network traffic. For automated behavior analysis, many meta information and behavior information obtained using network traffic collection are used as machine learning features. By these features, we created and learned behavior model, network model and protocol-specific models. In addition, the ensemble model was developed by digitizing and summing the results of various models. We developed a function to present information leakage candidates and view meta information and behavior information from various perspectives using the visual analysis. This supports to rule-based threat detection and machine learning based threat detection. In the future, we plan to make an ensemble model that applies a regression model to the results of the models, and plan to develop a model with deep learning technology.
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.177-189
/
2023
Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.
사이버 공격, 위협이 복잡해지고 빠르게 진화하면서, 4차 산업 혁명의 핵심 기술인 인공지능(AI)을 이용하여 사이버 위협 탐지 시스템 구축이 계속해서 주목받고 있다. 특히, 기업 및 정부 조직의 보안 운영 센터(Security Operations Center)에서는 보안 오케스트레이션, 자동화, 대응을 뜻하는 SOAR(Security Orchestration, Automation and Response) 솔루션 구현을 위해 AI를 활용하는 사례가 증가하고 있으며, 이는 향후 예견되는 근거를 바탕으로 한 지식인 사이버 위협 인텔리전스(Cyber Threat Intelligence, CTI) 구축 및 공유를 목적으로 한다. 본 논문에서는 네트워크 트래픽, 웹 방화벽(WAF) 로그 데이터를 대상으로 한 사이버 위협 탐지 기술 동향을 소개하고, TF-IDF(Term Frequency-Inverse Document Frequency) 기술과 자동화된 머신러닝(AutoML)을 이용하여 웹 트래픽 로그 공격 유형을 분류하는 방법을 제시한다.
네트워크를 통한 사이버 공격 기법들이 다양화, 고급화 되면서 간단한 규칙 기반의 침입 탐지/방지 시스템으로는 지능형 지속 위협(Advanced Persistent Threat: APT) 공격과 같은 새로운 형태의 공격을 찾아내기가 어렵다. 기존에 알려지지 않은 형태의 공격 방식을 탐지하는 이상행위 탐지(anomaly detection)를 위한 해결책으로 최근 기계학습 기법을 침입탐지 시스템에 도입한 연구들이 많다. 기계학습을 이용하는 경우, 사용하는 특징 집합에 침입탐지 시스템의 효율성과 성능이 크게 좌우된다. 일반적으로, 사용하는 특징이 많을수록 침입탐지 시스템의 정확성은 높아지는 반면 탐지를 위해 소요되는 시간이 많아져 긴급성을 요하는 경우 문제가 된다. 논문은 이러한 두 가지 조건을 동시에 충족하는 특징 집합을 찾고자 다목적 유전자 알고리즘을 제안하고 인공신경망에 기반한 네트워크 침입탐지 시스템을 설계한다. 제안한 방법의 성능 평가를 위해 NSL_KDD 데이터를 대상으로 이전에 제안된 방법들과 비교한다.
지난 10년 동안 인터넷은 빠른 속도로 모든 분야에 확산되어 왔으면 이와 비슷한 현상으로 최근 몇 년 동안 무선 네트워크의 확산 역시 빠른 속도로 보급되고 있는 추세이다. 그리고, 무선 네트워크 공격 시도 및 침입에 성공하는 공격의 횟수도 증가하고 있다. 이런 무선 네트워크 위협을 극복하기 위해 기존의 TMS는 필요에 따라 자동화되고 능동적인 대응 수단을 제공하기도 하지만, 새로운 형태의 무선 공격 등에는 효율적으로 대응하지 못한다는 취약점을 가지고 있다. 따라서 본 연구에서는 정보검색분야에서 사용되는 Vector Space모델을 이용해 실시간으로 유입되는 패킷과의 유사도를 비교하여, 분석된 유사도의 패턴을 분석해 무선 네트워크의 이상 징후를 탐지하고 자동으로 분류하는 기법을 설계했다.
인터넷 사용 증가로 인한 통신망에 대한 위협은 갈수록 증대되고 있다. 이에 대한 방안으로 많은 보안장비들이 개발되어 설치되고 있으며, 침입차단시스템에 이어 근래에는 침입탐지시스템에 대한 연구와 개발이 활성화되고 있다. 그러나, 네트워크의 규모가 커지고, 관리 대상 시스템의 수가 방대해짐에 따라 현재의 단일 네트워크 단위의 관리로는 해결이 어렵다. 본 논문에서는 IETF에서 진행되고 있는 PBNM(Policy-Based Network Management) 기술을 도입하여 대규모의 네트워크의 보안을 관리하기 위한 통합 침입탐지시스템(Integrated Intrusion Detection System:IIDS)을 설계한다. 통합 침입탐지시스템은 다수의 침입탐지 에이전트로 구성되어 있으며, 시스템의 요구사항과 기능별 요소들에 대하여 기술하고 있다.
인터넷의 사용이 증가하면서, DDoS (분산 서비스 공격)를 비롯한 여러 가지 네트워크 공격들이 오늘날 인터넷의 안정성에 커다란 위협을 가하고 있다 인터넷과 같은 대규모 망을 대상으로 한 이러한 네트워크 공격들은 특정 호스트에 대한 피해뿐만 아니라, 전체 네트워크의 성능 저하를 유발한다. 이러한 피해를 막기 위해서 대규모 기간망에서 적용 가능한 효율적이고 간단한 공격 탐지 기법이 필요하다. 이를 위해 빈도의 분포에 대한 간단한 통계치인 엔트로피를 이용하고자 한다. 네트워크 공격에 따라서 특정 근원지 주소, 특정 목적지 주소 그리고 특정 목적지 포트의 비정상적인 빈도가 관찰되기 때문에 위 세가지 항목에 대한 엔트로피의 변화를 이용하여 네트워크 공격을 탐지한다. 세가지 엔트로피의 변화하는 형태를 분석하여 네트워크 공격의 종류 또한 파악할 수 있다.
The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.