• Title/Summary/Keyword: network threat

Search Result 435, Processing Time 0.02 seconds

Significance and Research Challenges of Defensive and Offensive Cybersecurity in Smart Grid

  • Hana, Mujlid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.29-36
    • /
    • 2022
  • Smart grid (SG) software platforms and communication networks that run and manage the entire grid are increasingly concerned about cyber security. Characteristics of the smart grid networks, including heterogeneity, time restrictions, bandwidth, scalability, and other factors make it difficult to secure. The age-old strategy of "building bigger walls" is no longer sufficient given the rise in the quantity and size of cyberattacks as well as the sophisticated methods threat actor uses to hide their actions. Cyber security experts utilize technologies and procedures to defend IT systems and data from intruders. The primary objective of every organization's cybersecurity team is to safeguard data and information technology (IT) infrastructure. Consequently, further research is required to create guidelines and methods that are compatible with smart grid security. In this study, we have discussed objectives of of smart grid security, challenges of smart grid security, defensive cybersecurity techniques, offensive cybersecurity techniques and open research challenges of cybersecurity.

A Survey of Cybersecurity Vulnerabilities in Healthcare Systems

  • Adwan Alownie Alanazi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.155-161
    • /
    • 2023
  • In the process of remarkable progress in the medical and technical field and activating the role of technology in health care services and applications, and since the safety of medical data and its protection from security violations plays a major role in assessing the security of health facilities and the safety of medical servers Thus, it is necessary to know the cyber vulnerabilities in health information systems and other related services to prevent and address them in addition to obtaining the best solutions and practices to reach a high level of cybersecurity against attackers, especially due to the digital transformation of health care systems and the rest of the dealings. This research is about what cyberattacks are and the purpose of them, in addition to the methods of penetration. Then challenges, solutions and some of the security issues will be discussed in general, and a special highlight will be given to obtaining a safe infrastructure to enjoy safe systems in return.

Sabotage of Intruder Alarm System Loop

  • Karel Burda
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.23-31
    • /
    • 2023
  • This article discusses the sabotage of loops of intruder alarm systems. Although loop alarm systems are now gradually being replaced by digital alarm systems, they are still significantly present in practice. This paper describes two experimentally verified techniques for sabotaging balanced loops. The first technique is based on the jump replacement of the balancing resistor by a fake resistor. The second technique is based on inserting a series-parallel combination of two rheostats into the loop. By alternately changing the resistance of these rheostats, a state is reached where the balancing resistor is shorted by the parallel rheostat and replaced by the series rheostat. Sabotage devices for both attacks are technically simple and inexpensive, so they can be made and used by an amateur. Owners of loop alarm systems should become find out about this threat.

Predicting the Adoption of Health Wearables with an Emphasis on the Perceived Ethics of Biometric Data

  • Tahereh Saheb;Tayebeh Saheb
    • Asia pacific journal of information systems
    • /
    • v.31 no.1
    • /
    • pp.121-140
    • /
    • 2021
  • The main purpose of this research is to understand the strongest predictors of wearable adoption among athletes with an emphasis on the perceived ethics of biometric data. We performed a word co-occurrence study of biometrics research to determine the ethical constructs of biometric data. A questionnaire incorporating the Unified Theory of Acceptance and Use of Technology (UTAUT), Health Belief Model and Biometric Data Ethics was then designed to develop a neural network model to predict the adoption of wearable sensors among athletes. Our model shows that wearable adoption's strongest predictors are perceived ethics, perceived profit, and perceived threat; which can be categorized as professional stressors. The key theoretical contribution of this paper is to extend the literature on UTAUT by developing a predictive modeling of factors affecting acceptance of wearables by athletes, and highlighting the ethical implications of athlete's adoption of wearables.

Securing SCADA Systems: A Comprehensive Machine Learning Approach for Detecting Reconnaissance Attacks

  • Ezaz Aldahasi;Talal Alkharobi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.1-12
    • /
    • 2023
  • Ensuring the security of Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) is paramount to safeguarding the reliability and safety of critical infrastructure. This paper addresses the significant threat posed by reconnaissance attacks on SCADA/ICS networks and presents an innovative methodology for enhancing their protection. The proposed approach strategically employs imbalance dataset handling techniques, ensemble methods, and feature engineering to enhance the resilience of SCADA/ICS systems. Experimentation and analysis demonstrate the compelling efficacy of our strategy, as evidenced by excellent model performance characterized by good precision, recall, and a commendably low false negative (FN). The practical utility of our approach is underscored through the evaluation of real-world SCADA/ICS datasets, showcasing superior performance compared to existing methods in a comparative analysis. Moreover, the integration of feature augmentation is revealed to significantly enhance detection capabilities. This research contributes to advancing the security posture of SCADA/ICS environments, addressing a critical imperative in the face of evolving cyber threats.

Secure and Resilient Framework for Internet of Medical Things (IoMT) with an Effective Cybersecurity Risk Management

  • Latifah Khalid Alabdulwahhab;Shaik Shakeel Ahamad
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.73-78
    • /
    • 2024
  • COVID-19 pandemic outbreak increased the use of Internet of Medical Things (IoMT), but the existing IoMT solutions are not free from attacks. This paper proposes a secure and resilient framework for IoMT, it computes the risk using Risk Impact Parameters (RIP) and Risk is also calculated based upon the Threat Events in the Internet of Medical Things (IoMT). UICC (Universal Integrated Circuit Card) and TPM (Trusted Platform Module) are used to ensure security in IoMT. PILAR Risk Management Tool is used to perform qualitative and quantitative risk analysis. It is designed to support the risk management process along long periods, providing incremental analysis as the safeguards improve.

Security Determinants of the Educational Use of Mobile Cloud Computing in Higher Education

  • Waleed Alghaith
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.105-118
    • /
    • 2024
  • The decision to integrate mobile cloud computing (MCC) in higher education without first defining suitable usage scenarios is a global issue as the usage of such services becomes extensive. Consequently, this study investigates the security determinants of the educational use of mobile cloud computing among universities students. This study proposes and develops a theoretical model by adopting and modifying the Protection Motivation Theory (PMT). The studys findings show that a significant amount of variance in MCC adoption was explained by the proposed model. MCC adoption intention was shown to be highly influenced by threat appraisal and coping appraisal factors. Perceived severity alone explains 37.8% of students "Intention" to adopt MCC applications, which indicates the student's perception of the degree of harm that would happen can hinder them from using MCC. It encompasses concerns about data security, privacy breaches, and academic integrity issues. Response cost, perceived vulnerability and response efficacy also have significant influence on students "intention" by 18.8%, 17.7%, and 6.7%, respectively.

A study on Performance Evaluation for Network Architecture using Quantum Key Distribution Technology (양자암호기반의 통신망 구축 및 성능시험 검증연구)

  • Lee, Wonhyuk;Seok, Woojin;Park, Chanjin;Kwon, Woochang;Sohn, Ilkwon;Kim, Seunghae;Park, Byoungyoen
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • There are several big data-driven advanced research activities such as meteorological climate information, high energy physics, astronomy research, satellite information data, and genomic research data on KREONET. Since the performance degradation occurs in the environment with the existing network security equipment, methods for preventing the performance degradation on the high-performance research-only network and for high-speed research collaboration are being studied. In addition, the recent issue of quantum computers has been a threat to security using the existing encryption system. In this paper, we construct quantum cryptography-based communication network through environment construction and high-performance transmission test that build physical security through quantum cryptography-based communication network in end-to-end high-speed research network. The purpose of this study is to analyze the effect on network performance when performing physical encryption and to use it as basic data for constructing high-performance research collaboration network.

On the Design of a Big Data based Real-Time Network Traffic Analysis Platform (빅데이터 기반의 실시간 네트워크 트래픽 분석 플랫폼 설계)

  • Lee, Donghwan;Park, Jeong Chan;Yu, Changon;Yun, Hosang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.721-728
    • /
    • 2013
  • Big data is one of the most spotlighted technological trends in these days, enabling new methods to handle huge volume of complicated data for a broad range of applications. Real-time network traffic analysis essentially deals with big data, which is comprised of different types of log data from various sensors. To tackle this problem, in this paper, we devise a big data based platform, RENTAP, to detect and analyse malicious network traffic. Focused on military network environment such as closed network for C4I systems, leading big data based solutions are evaluated to verify which combination of the solutions is the best design for network traffic analysis platform. Based on the selected solutions, we provide detailed functional design of the suggested platform.

Real-time security Monitroing assessment model for cybersecurity vulnera bilities in network separation situations (망분리 네트워크 상황에서 사이버보안 취약점 실시간 보안관제 평가모델)

  • Lee, DongHwi;Kim, Hong-Ki
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • When the security monitoring system is performed in a separation network, there is little normal anomaly detection in internal networks or high-risk sections. Therefore, after the establishment of the security network, a model is needed to evaluate state-of-the-art cyber threat anomalies for internal network in separation network to complete the optimized security structure. In this study, We evaluate it by generating datasets of cyber vulnerabilities and malicious code arising from general and separation networks, It prepare for the latest cyber vulnerabilities in internal network cyber attacks to analyze threats, and established a cyber security test evaluation system that fits the characteristics. The study designed an evaluation model that can be applied to actual separation network institutions, and constructed a test data set for each situation and applied a real-time security assessment model.