• 제목/요약/키워드: network synchronization

검색결과 562건 처리시간 0.033초

동기망과 전송망에서의 동기클럭 성능 분석을 위한 시뮬레이터 개발 (Development of Simulator for Performance Analysis of Synchronization Clock in the Synchronization Network and Transmission Network)

  • 이창기
    • 정보처리학회논문지C
    • /
    • 제11C권1호
    • /
    • pp.123-134
    • /
    • 2004
  • 동기 망과 전송망에서의 동기클럭 성능은 망의 안정성 화보와 데이터 전송 보장 측면에서 중요한 요소이다. 그러므로 망을 설계할 때 동기망과 전송망의 동기클럭 성능을 분석하기 위하여 다양한 파라메타를 적용할 수 있고, 그리고 최상상태에서 최악상태까지 망에서 나타날 수 있는 여러 가지 입력레벨을 적용할 수 있는 시뮬레이터가 필요하다. 따라서 본 논문에서는 동기망과 전송망에서의 동기클럭 특성을 분석할 수 있는 SNCA와 TNCA를 개발하였고, 또한 개발된 시뮬레이터를 활용하여 다양한 원더생성, 노드 수, 클럭 상태 등의 입력조건에 따른 NEl, NE2, NE3 등 전송망과 DOTS1과 DOTS2 등 동기 망에서의 동기 클럭 특성과 최대 노드수 결과를 얻었다.

Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling

  • Lim, HoChul;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • 제16권2호
    • /
    • pp.84-92
    • /
    • 2018
  • For large wireless sensor networks running on battery power, the time synchronization of all sensor nodes is becoming a crucial task for waking up sensor nodes with exact timing and controlling transmission and reception timing. However, as network size increases, this synchronization process tends to require long processing time consume significant power. Furthermore, a naïve synchronization scheduler may leave some nodes unsynchronized. This paper proposes a power-efficient scheduling algorithm for time synchronization utilizing the notion of density, which is defined by the number of neighboring nodes within wireless range. The proposed scheduling algorithm elects a sequence of minimal reference nodes that can complete the synchronization with the smallest possible number of hops and lowest possible power consumption. Additionally, it ensures coverage of all sensor nodes utilizing a two-pass synchronization scheduling process. We implemented the proposed synchronization algorithm in a network simulator. Extensive simulation results demonstrate that the proposed algorithm can reduce the power consumption required for the periodic synchronization process by up to 40% for large sensor networks compared to a simplistic multi-hop synchronization method.

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜 (An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks)

  • 배시규
    • 한국멀티미디어학회논문지
    • /
    • 제19권10호
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

SYNCHRONIZATION OF UNIDIRECTIONAL RING STRUCTURED IDENTICAL FITZHUGH-NAGUMO NETWORK UNDER IONIC AND EXTERNAL ELECTRICAL STIMULATIONS

  • Ibrahim, Malik Muhammad;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • 제36권5호
    • /
    • pp.547-554
    • /
    • 2020
  • Synchronization of unidirectional identical FitzHugh-Nagumo systems coupled in a ring structure under ionic and external electrical stimulations is investigated. In this network, each neuron is only connected and transmit signals to its next neuron via synaptic strength called gapjunctions. Adaptive control theory and Lyapunov stability theory are used to propose a unique control scheme with necessary and sufficient conditions which guarantee the synchronization of the neuronal network. Finally, the effectiveness of the proposed scheme is shown through numerical simulations.

CAN 시간동기를 이용한 복수 전동기 동기제어 (Synchronization Control of Multiple Motors using CAN Clock Synchronization)

  • ;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.624-628
    • /
    • 2008
  • This paper is concerned with multiple motor control using a distributed network control method. Speed and position of multiple motors are synchronized using clock synchronized distributed controllers. CAN (controller area network) is used and a new clock synchronization algorithm is proposed and implemented. To verify the proposed control algorithm, two disks which are attached on two motor shafts are controlled to rotate at the same speed and phase angle with the same time base using network clocks.

A Revised Timing-sync Protocol for Sensor Networks by a Polling Method

  • Bae, Shi-Kyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권8호
    • /
    • pp.23-28
    • /
    • 2015
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol for WSN(wireless sensor networks), was developed to provide higher synchronization accuracy and energy efficiency. So, TPSN's approach has been referenced by so many other WSN synchronization schemes till now. However, TPSN has a collision problem due to simultaneous transmission among competing nodes, which causes more network convergence delay for a network-wide synchronization. A Polling-based scheme for TPSN is proposed in this paper. The proposed scheme not only shortens network-wide synchronization time of TPSN, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

Small World 구축을 위한 동기화 기법 (The Synchronization Method for Build Small World)

  • 배영철;구영덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.701-704
    • /
    • 2004
  • In this paper, we proposed that the synchronization method for build small world. In order to build a small world, we used Chua's oscillator which well represent the chaos dynamics and composed several stage with Chua's oscillator by using coupled synchronization method. This paper shows a synchronization result in the small world network using coupled synchronization method. Not only time series and phase plane are implemented but also degree of synchronization in the small world network is presented.

  • PDF

자유로운 연결 구조를 갖는 복잡 동적망의 동기화 (Synchronization of a Complex Dynamical Network with Free Coupling Matrix)

  • 이태희;박주현;권오민;이상문
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1586-1591
    • /
    • 2011
  • This paper considers synchronization problem of a complex dynamical network. For the problem, the virtual target node is chosen as one of nodes in the complex network and only one connection is needed between an isolate target node and virtual target node not any more connections. Moreover, our synchronization scheme does not need additional conditions and information of coupling matrix comparing with existing works. Based on Lyapunov stability theory, a design criterion for a novel adaptive feedback controller for the synchronization between the isolate target node and another nodes of the complex network is proposed. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

주파수도약 네트워크 통신 시스템의 구조설계 및 동기성능 분석 (The Design and Performance Analysis of Synchronization on Frequency Hopping Network Communication System)

  • 임소진;배석능;한성우
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.819-827
    • /
    • 2013
  • Compared to legacy frequency hopping communications, future radio communications are required the secure and high data rate, ad-hoc network communication. In this paper, we have designed the network communication structure on the frequency hopping mode, and analyzed the performance of synchronization on the frequency hopping network radio systems. The design results are shown the initial sync. phase of approximately 9 hops and the traffic packet phase of approximately 30 hops. Also, we have simulated the performance on the communication conditions which are carrier bandwidth of 50kHz, user data rate of 64kbps and OQPSK modulation scheme in AWGN. In the simulation, we analyzed the correlation and the performance of synchronization success. The result of simulation show 99% probability for synchronization success at $E_b/N_o$ -4dB.