• Title/Summary/Keyword: network status classification

Search Result 69, Processing Time 0.034 seconds

The Analysis of the Purchasing Process and Distribution Management Requirements of Teaching Materials in Preschool

  • Jae-Moo LEE;Kyung-Seu CHO
    • Journal of Distribution Science
    • /
    • v.22 no.1
    • /
    • pp.115-125
    • /
    • 2024
  • Purpose: This study is to analyze the purchasing process and distribution management requirements for teaching materials that have important meaning in the practical field of preschool education. Research design, data and methodology: A structured questionnaire was used to survey 103 childcare staffs regarding the purchasing process and distribution managements. The collected data underwent Likert's 5-point scale analysis and keyword grouping. Additionally, ANOVA was conducted to examine the distribution management demands based on demographic characteristics. Results: The purchasing of teaching materials involved more offline channels than online, and the purchase decisions were predominantly made by principals rather than teachers. Although the purchasing process is similar to that of general businesses, there are difficulties in purchasing due to the disorganized distribution channels and limited accessibility to product information. Additionally, the management of inventory for teaching materials is challenging due to limited personnel and storage. Childcare staffs have requirements for classification systems, evaluation criteria, environments and policies related to teaching materials distribution. The need to introduce a teaching material evaluation and certification system to ensure quality was not high. Conclusions: Most of the respondents recognized that strict management and measures should be taken for the distribution of teaching materials. There were differences in the demand of teaching material distribution depending on the respondents' status, age, education, and experience.

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

Investigating Non-Laboratory Variables to Predict Diabetic and Prediabetic Patients from Electronic Medical Records Using Machine Learning

  • Mukhtar, Hamid;Al Azwari, Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.19-30
    • /
    • 2021
  • Diabetes Mellitus (DM) is one of common chronic diseases leading to severe health complications that may cause death. The disease influences individuals, community, and the government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes prevalence across the world. Since most of the medical services are provided by the government, the cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden due to the large scale of the disease. The ability to predict the diabetic status of a patient without the laboratory tests by performing screening based on some personal features can lessen the health and economic burden caused by diabetes alone. The goal of this paper is to investigate the prediction of diabetic and prediabetic patients by considering factors other than the laboratory tests, as required by physicians in general. With the data obtained from local hospitals, medical records were processed to obtain a dataset that classified patients into three classes: diabetic, prediabetic, and non-diabetic. After applying three machine learning algorithms, we established good performance for accuracy, precision, and recall of the models on the dataset. Further analysis was performed on the data to identify important non-laboratory variables related to the patients for diabetes classification. The importance of five variables (gender, physical activity level, hypertension, BMI, and age) from the person's basic health data were investigated to find their contribution to the state of a patient being diabetic, prediabetic or normal. Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by the American Diabetes Association (ADA) and other health institutions worldwide. We conclude that by performing class-specific analysis of the disease, important factors specific to Saudi population can be identified, whose management can result in controlling the disease. We also provide some recommendations learnt from this research.

Artificial Intelligence-based Classification Scheme to improve Time Series Data Accuracy of IoT Sensors (IoT 센서의 시계열 데이터 정확도 향상을 위한 인공지능 기반 분류 기법)

  • Kim, Jin-Young;Sim, Isaac;Yoon, Sung-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • As the parallel computing capability for artificial intelligence improves, the field of artificial intelligence technology is expanding in various industries. In particular, artificial intelligence is being introduced to process data generated from IoT sensors that have enoumous data. However, the limitation exists when applying the AI techniques on IoT network because IoT has time series data, where the importance of data changes over time. In this paper, we propose time-weighted and user-state based artificial intelligence processing techniques to effectively process IoT sensor data. This technique aims to effectively classify IoT sensor data through a data pre-processing process that personalizes time series data and places a weight on the time series data before artificial intelligence learning and use status of personal data. Based on the research, it is possible to propose a method of applying artificial intelligence learning in various fields.

Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration (기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교)

  • Choi, Yonghun;Kim, Minyoung;O'Shaughnessy, Susan;Jeon, Jonggil;Kim, Youngjin;Song, Weon Jung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.43-54
    • /
    • 2018
  • The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Current Status of Systems Biology in Traditional Chinese medicine - in regards to influences to Korean Medicine (최근 중의학에서 시스템생물학의 발전 현황 - 한의학에 미치는 영향 및 시사점을 중심으로 -)

  • Lee, Seungeun;Lee, Sundong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • Objectives : This paper serves to explore current trends of systems biology in Traditional Chinese Medicine (TCM) and examine how it may influence the Traditional Korean medicine. Methods : Literature review method was collectively used to classify Introduction to systems biology, diagnosis and syndrome classification of systems biology in TCM perspective, physiotherapy including acupuncture, herbs and formula functions, TCM systems biology, and directions of academic development. Results : The term 'Systems biology' is coined as a combination of systems science and biology. It is a field of study that tries to understand living organism by establishing a theory based on an ideal model that analyzes and predicts the desired output with understanding of interrelationships and dynamics between variables. Systems biology has an integrated and multi-dimensional nature that observes the interaction among the elements constructing the network. The current state of systems biology in TCM is categorized into 4 parts: diagnosis and syndrome, physical therapy, herbs and formulas and academic development of TCM systems biology and its technology. Diagnosis and syndrome field is focusing on developing TCM into personalized medicine by clarifying Kidney yin deficiency patterns and metabolic differences among five patterns of diabetes and analyzing plasma metabolism and biomarkers of coronary heart disease patients. In the field of physical therapy such as acupuncture and moxibustion, researchers discovered the effect of stimulating acupoint ST40 on gene expression and the effects of acupuncture on treating functional dyspepsia and acute ischemic stroke. Herbs and formulas were analyzed with TCM network pharmacology. The therapeutic mechanisms of Si Wu Tang and its series formulas are explained by identifying potential active substances, targets and mechanism of action, including metabolic pathways of amino acid and fatty acid. For the academic development of TCM systems biology and its technology, it is necessary to integrate massive database, integrate pharmacokinetics and pharmacodynamics, as well as systems biology. It is also essential to establish a platform to maximize herbal treatment through accumulation of research data and diseases-specific, or drug-specific network combined with clinical experiences, and identify functions and roles of molecules in herbs and conduct animal-based studies within TCM frame. So far, few literature reviews exist for systems biology in traditional Korean medicine and they merely re-examine known efficacies of simple substances, herbs and formulas. For the future, it is necessary to identify specific mechanisms of working agents and targets to maximize the effects of traditional medicine modalities. Conclusions : Systems biology is widely accepted and studied in TCM and already advanced into a field known as 'TCM systems biology', which calls for the study of incorporating TCM and systems biology. It is time for traditional Korean medicine to acknowledge the importance of systems biology and present scientific basis of traditional medicine and establish the principles of diagnosis, prevention and treatment of diseases. By doing so, traditional Korean medicine would be innovated and further developed into a personalized medicine.

A Study on the Revitalization of Medical School Libraries through the Analysis of Current Situation (의과대학도서관 현황 분석을 통한 활성화 방안 연구)

  • Shin, Youngji;Noh, Yoounhee
    • Journal of Korean Library and Information Science Society
    • /
    • v.50 no.3
    • /
    • pp.191-216
    • /
    • 2019
  • This study is to suggest the revitalization plan of the medical school libraries in the future, on the basis of analysis for the overall operation situation of the medical school libraries among the medical libraries. So based on the website, it is divided into 1) whether independent homepage exists, 2) service target, 3) books, 4) classification system, 5) manpower, 6) facilities (area, number of seats available), 7) equipment (pc, printer, copy machine, etc.), 8) services, and then analyzed. Consequently, as the ways to revitalize the medical libraries, firstly, it is necessary to establish legal standards and develop guidelines for the medical school library's books, sizes, librarians, etc. Secondly, establishing a cooperative community network between medical school libraries is necessary. Thirdly, policies such as support at the national level, specialization education of librarians, development of operational guidelines, and activation of inter-library networks are needed to revitalize the medical school libraries. It is also expected that research on the actual situation of the medical libraries should be conducted at the national level or at the level of the association of medical libraries.

Sensor Data Collection & Refining System for Machine Learning-Based Cloud (기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.165-170
    • /
    • 2021
  • Machine learning has recently been applied to research in most areas. This is because the results of machine learning are not determined, but the learning of input data creates the objective function, which enables the determination of new data. In addition, the increase in accumulated data affects the accuracy of machine learning results. The data collected here is an important factor in machine learning. The proposed system is a convergence system of cloud systems and local fog systems for service delivery. Thus, the cloud system provides machine learning and infrastructure for services, while the fog system is located in the middle of the cloud and the user to collect and refine data. The data for this application shall be based on the Sensitive data generated by smart devices. The machine learning technique applied to this system uses SVM algorithm for classification and RNN algorithm for status recognition.

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.