• Title/Summary/Keyword: network status classification

Search Result 69, Processing Time 0.028 seconds

Feasibility of fully automated classification of whole slide images based on deep learning

  • Cho, Kyung-Ok;Lee, Sung Hak;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • Although microscopic analysis of tissue slides has been the basis for disease diagnosis for decades, intra- and inter-observer variabilities remain issues to be resolved. The recent introduction of digital scanners has allowed for using deep learning in the analysis of tissue images because many whole slide images (WSIs) are accessible to researchers. In the present study, we investigated the possibility of a deep learning-based, fully automated, computer-aided diagnosis system with WSIs from a stomach adenocarcinoma dataset. Three different convolutional neural network architectures were tested to determine the better architecture for tissue classifier. Each network was trained to classify small tissue patches into normal or tumor. Based on the patch-level classification, tumor probability heatmaps can be overlaid on tissue images. We observed three different tissue patterns, including clear normal, clear tumor and ambiguous cases. We suggest that longer inspection time can be assigned to ambiguous cases compared to clear normal cases, increasing the accuracy and efficiency of histopathologic diagnosis by pre-evaluating the status of the WSIs. When the classifier was tested with completely different WSI dataset, the performance was not optimal because of the different tissue preparation quality. By including a small amount of data from the new dataset for training, the performance for the new dataset was much enhanced. These results indicated that WSI dataset should include tissues prepared from many different preparation conditions to construct a generalized tissue classifier. Thus, multi-national/multi-center dataset should be built for the application of deep learning in the real world medical practice.

Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound (LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구)

  • Kim, Eui-Youl;Lee, Sang-Kwon;Jang, Ji-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.813-822
    • /
    • 2012
  • Abnormal operating sounds radiated from a moving transfer robot in LCD (liquid crystal display) product lines have been used for the fault detection line of a robot instead of other source signals such as vibrations, acoustic emissions, and electrical signals. Its advantage as a source signal makes it possible to monitor the status of multiple faults by using only a microphone, despite a relatively low sensitivity. The wavelet packet transform for feature extraction and the artificial neural network for fault classification are employed. It can be observed that the abnormal operating sound is sufficiently useful as a source signal for the fault diagnosis of mechanical components as well as other source signals.

A Method for Detection and Classification of Normal Server Activities and Attacks Composed of Similar Connection Patterns (종단간의 유사 연결 패턴을 갖는 정상 서버 활동과 공격의 구분 및 탐지 방법)

  • Chang, Beom-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1315-1324
    • /
    • 2012
  • Security visualization is a form of the data visualization techniques in the field of network security by using security-related events so that it is quickly and easily to understand network traffic flow and security situation. In particular, the security visualization that detects the abnormal situation of network visualizing connections between two endpoints is a novel approach to detect unknown attack patterns and to reduce monitoring overhead in packets monitoring technique. However, the session-based visualization doesn't notice a difference between normal traffic and attacks that they are composed of similar connection pattern. Therefore, in this paper, we propose an efficient session-based visualization method for analyzing and detecting between normal server activities and attacks by using the IP address splitting and port attributes analysis. The proposed method can actually be used to detect and analyze the network security with the existing security tools because there is no dependence on other security monitoring methods. And also, it is helpful for network administrator to rapidly analyze the security status of managed network.

Classification of Very High Concerns HRCT Images using Extended Bayesian Networks (확장 베이지안망을 적용한 고위험성 HRCT 영상 분류)

  • Lim, Chae-Gyun;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Recently the medical field to efficiently process the vast amounts of information to decision trees, neural networks, Bayesian Networks, including the application method of various data mining techniques are investigated. In addition, the basic personal information or patient history, family history, in addition to information such as MRI, HRCT images and additional information to collect and leverage in the diagnosis of disease, improved diagnostic accuracy is to promote a common status. But in real world situations that affect the results much because of the variable exists for a particular data mining techniques to obtain information through the enemy can be seen fairly limited. Medical images were taken as well as a minor can not give a positive impact on the diagnosis, but the proportion increased subjective judgments by the automated system is to deal with difficult issues. As a result of a complex reality, the situation is more advantageous to deal with the relative probability of the multivariate model based on Bayesian network, or TAN in the K2 search algorithm improves due to expansion model has been proposed. At this point, depending on the type of search algorithm applied significantly influenced the performance characteristics of the extended Bayesian network, the performance and suitability of each technique for evaluation of the facts is required. In this paper, we extend the Bayesian network for diagnosis of diseases using the same data were carried out, K2, TAN and changes in search algorithms such as classification accuracy was measured. In the 10-fold cross-validation experiment was performed to compare the performance evaluation based on the analysis and the onset of high-risk classification for patients with HRCT images could be possible to identify high-risk data.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

An Analysis on the Research Network Structure of Convergence Technologies in Government-sponsored Research Institutes (출연연구기관 융합기술 연구네트워크 구조 분석)

  • Kim, Hongyoung;Chung, Sunyang
    • Journal of Korea Technology Innovation Society
    • /
    • v.18 no.4
    • /
    • pp.693-718
    • /
    • 2015
  • This paper examines the presence of network structures among convergence technologies focusing on national R&D projects performed by GRIs(Government-sponsored Research Institutes) in Korea. The dataset of convergence technology projects, which were conducted by 24 GRIs over 3 years (2011-2013), are analysed using the network analysis method. In this paper, a convergence technology project is defined as a project that consists of 2 or more then 2 technologies according to the intermediate classification of National Standard Classification of S&T. The research results confirm that convergence researches of government-sponsored research institutes are performed more actively than the entire convergence researches of national R&D projects. Furthermore, technological fields of GRIs' convergence projects are found to be much more varied. This paper also shows that in-house researches are more active than collaborative ones with external organizations. According to the network centrality analysis, it is identified that the network central characteristics of convergence technologies can be classified into internally oriented technologies and externally oriented technologies. Convergence technologies do not just mean simple mixture of different technologies. Therefore Korean government-sponsored research institutes should make more efforts to create convergence research areas which could generate new technologies and industries more effectively than simple multidisciplinary technology researches. From this perspective, some policy suggestions can be derived on the role of government-sponsored research institutes for activating convergence researches through the analysis of status of convergence researches and networks of institutions.

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

Status and Future of Security Techniques in the Internet Banking Service (인터넷 뱅킹 서비스 보안기술의 현황과 미래)

  • Lee, Kyungroul;Yim, Kangbin;Seo, Jungtaek
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.31-42
    • /
    • 2017
  • As Internet banking service became popular, many users can exchange goods by online. Even though this advantage, there are incident cases in the Internet banking service due to security threats. In order to counteract this problem, various security techniques have been applied over whole area in the Internet banking service. Therefore, we described that analyzed results of security techniques applied in the financial institutions area and network communication area in this paper. We consider that this paper will be useful as a reference to protect security threats occurred by insiders and vulnerabilities in implementation.

Research Status on Machine Learning for Self-Healing of Mobile Communication Network (이동통신망 자가 치유를 위한 기계학습 연구동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.

A Dynamic Configuration of Calibration Points using Multidimensional Sensor Data Analysis (다중 센서 데이터 분석을 이용한 동적보정점 결정 기법)

  • Kim, Byoung-Sub;Kim, Jae-Hoon
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2016
  • Focusing on the drastic increase of smart devices, machine generated data expansion is a general phenomenon in network services and IoT (Internet of Things). Especially, built-in multi sensors in a smart device are used for collection of user status and moving data. Combining the internal sensor data and environmental information, we can determine landmarks that decide a pedestrian's locations. We use an ANOVA method to analyze data acquired from multi sensors and propose a landmark classification algorithm. We expect that the proposed algorithm can achieve higher accuracy of indoor-outdoor positioning system for pedestrians.