• Title/Summary/Keyword: network status classification

Search Result 69, Processing Time 0.026 seconds

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

An Analysis of Land Cover Classification Methods Using IKONOS Satellite Image (IKONOS 영상을 이용한 토지피복분류 기법 분석)

  • Kang, Nam Yi;Pak, Jung Gi;Cho, Gi Sung;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.65-71
    • /
    • 2012
  • Recently the high-resolution satellite images are helpfully using the land cover, status data for the natural resources or environment management. The effective satellite analysis process for these satellite images that require high investment can be increase the effectiveness has become increasingly important. In this Study, the statistical value of the training data is calculated and analyzed during the preprocessing. Also, that is explained about the maximum likelihood classification of traditional classification method, artificial neural network (ANN) classification method and Support Vector Machines(SVM) classification method and then the IKONOS high-resolution satellite imagery was produced the land cover map using each classification method. Each result data had to analyze the accuracy through the error matrix. The results of this study prove that SVM classification method can be good alternative of the total accuracy of about 86% than other classification method.

Principal Component analysis based Ambulatory monitoring of elderly (주성분 분석 기반의 노약자 응급 모니터링)

  • Sharma, Annapurna;Lee, Hoon-Jae;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2105-2110
    • /
    • 2008
  • Embedding the compact wearable units to monitor the health status of a person has been analysed as a convenient solution for the home health care. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring of the elderly and people with limited mobility can not only provide their general health status but also alarms whenever an emergency such as fall or gait has been occurred and a help is needed. A timely assistance in such a situation can reduce the loss of life. This work shows a detailed analysis of the data received from a chest worn sensor unit embedding a 3-axis accelerometer and depicts which features are important for the classification of human activities. How to arrange and reduce the features to a new feature set so that it can be classified using a simple classifier and also improving the classification resolution. Principal component analysis (PCA) has been used for modifying the feature set and afterwards for reducing the size of the same. Finally a Neural network classifier has been used to analyse the classification accuracies. The accuracy for detection of fall events was found to be 86%. The overall accuracy for the classification of Activities or daily living (ADL) and fall was around 94%.

Verification Model of the Feedwater Flow for the Calculation of Corrective Performance of Turbine Cycle (터빈 사이클의 보정 성능 계산을 위한 급수 유량의 검증 모델)

  • Kim, Seong-Kun;Yang, Hac-Jin;Lee, Kang-Hee;Choi, Kwang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.538-544
    • /
    • 2012
  • Analysis of thermal performance is required for the economic operation of turbine cycle of power plant. We developed corrective model of main feed water flow which is the most important parameter for the precise analysis of turbine cycle performance. Classification model for the identification of feed water flow measurement status was applied to increase the suitability of the corrective model. We used neural network and support vector machine to develop estimation model of main feed water flow with more generalization capability. The estimation model can be used practically to evaluate corrective performance of turbine cycle plant.

Neural network design for Ambulatory monitoring of elderly

  • Sharma, Annapurna;Lee, Hun-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.265-269
    • /
    • 2008
  • Home health care with compact wearable units sounds to be a convenient solution for the elderly people living independently. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring enables them to get an emergency help in the case of the fatal fall event and can provide their general health status by observing the activities being performed in daily life. A tri-axial accelerometer sensor is used to get the acceleration anomalies associated with the user's movements. The three axis acceleration data are transferred to the base station sensor node via an IEEE 802.15.4 compliant zigbee module. The base station sensor node sends the data to base station PC for an offline processing. This work shows the feature set preparation using the principal component analysis (PCA) for the designing of neural network. The work includes the most common activities of daily living (ADL) like Rest, Walk and Run along with the detection of fall events from ADL. The angle from the vertical is found to be the most significant feature parameter for classification of fall while mean, standard deviation and FFT coefficients were used as the feature parameter for classifying the other activities under consideration. The accuracy for detection of fall events is 86%. The overall accuracy for ADL and fall is 94%.

  • PDF

Efficient Tire Wear and Defect Detection Algorithm Based on Deep Learning (심층학습 기법을 활용한 효과적인 타이어 마모도 분류 및 손상 부위 검출 알고리즘)

  • Park, Hye-Jin;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1026-1034
    • /
    • 2021
  • Tire wear and defect are important factors for safe driving condition. These defects are generally inspected by some specialized experts or very expensive equipments such as stereo depth camera and depth gauge. In this paper, we propose tire safety vision inspector based on deep neural network (DNN). The status of tire wear is categorized into three: 'safety', 'warning', and 'danger' based on depth of tire tread. We propose an attention mechanism for emphasizing the feature of tread area. The attention-based feature is concatenated to output feature maps of the last convolution layer of ResNet-101 to extract more robust feature. Through experiments, the proposed tire wear classification model improves 1.8% of accuracy compared to the existing ResNet-101 model. For detecting the tire defections, the developed tire defect detection model shows up-to 91% of accuracy using the Mask R-CNN model. From these results, we can see that the suggested models are useful for checking on the safety condition of working tire in real environment.

A Study on Association between Reasons of Reducing Corporate Logistics Costs and Company Classification

  • JEONG, Dong Bin
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.3
    • /
    • pp.51-61
    • /
    • 2022
  • Purpose - The purpose of this study is to establish the government's logistics policy by calculating the logistics cost of the company and grasping the management status, to reduce the logistics cost of the related companies and to provide basic statistical data necessary for the management strategy. This work examines some associations between reasons for reducing corporate logistics costs (RCLC) and corporate classification such as industry and sales size. Research design, data, and methodology - The survey was conducted in 2018 for 2,000 companies based on the business of mining, manufacturing and wholesale and retail industries since 2010. The survey population is 94,976, of which 92,708 are small and medium enterprises and 2,268 are large corporations. The association among factors may be statistically and visually explored by using chi-squared test and correspondence analysis. Result - This study reveals the association between reasons for RCLC and corporate classification and properties and closeness that exist between the categories of each factor can be mined. Conclusion - As a task to reduce logistics costs of industrial products, expansion and operation of joint logistics business, establishment of cooperative logistics network, and establishment of ordinance on support for smart distribution logistics can be proposed.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

Distributed QoS Monitoring and Edge-to-Edge QoS Aggregation to Manage End-to-End Traffic Flows in Differentiated Services Networks

  • Kim, Jae-Young;James Won-Ki Hong
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.324-333
    • /
    • 2001
  • The Differentiated Services (Diffserv) framework has been proposed by the IETF as a simple service structure that can provide different Quality of Service (QoS) to different classes of packets in IP networks. IP packets are classified into one of a limited number of service classes, and are marked in the packet header for easy classification and differentiated treatments when transferred within a Diffserv domain. The Diffserv framework defines simple and efficient QoS differentiation mechanisms for the Internet. However, the original Diffserv concept does not provide a complete QoS management framework. Since traffic flows in IP networks are unidirectional from one network point to the other and routing paths and traffic demand get dynamically altered, it is important to monitor end-to-end traffic status, as well as traffic status in a single node. This paper suggests a distributed QoS monitoring method that collects the statistical data of each service class in every Diffserv router and calculates edge-to-edge QoS of the aggregated IP flows by combining routing topology and traffic status. A format modeling of edge-to-edge Diffserv flows and algorithms for aggregating edge-to-edge QoS is presented. Also an SNMP-based QoS management prototype system for Diffserv networks is presented, which validates our QoS management framework and demonstrates useful service management functionality.

  • PDF